This page is for archival purposes only!
Students should use
ODTU-Class
There will be 28 lectures given by the instructors, each lasting 2 class hours. The actual timing of the lectures will differ slightly from section to section because of the holidays, but the total number will be the same. Besides these lectures, there will be recitations, 2 hours per week, during which the assistants will solve extra problems and give quizzes.
The table below is a rough guideline for the content of course lectures. Professors may reorder content as necessary/desired. The section and page numbers below are from the textbook, Calculus, by James Stewart, 7th international metric ed., 2012.
Exam dates will be determined by the administration and are currently only approximate guesses.
Week 1:
Feb.22-26 |
1 |
Chapter 1. Functions and Limits §1.4: The Tangent and Velocity Problems. §1.5: The Limit of a Function. |
2 |
§1.6: Calculating Limits Using the Limit Laws. §1.8: Continuity. |
|
Week 2:
Feb.29-Mar.4 |
3 |
§1.7: The Precise Definition of a Limit. |
4 |
Chapter 2. Derivatives §2.1: Derivatives and Rates of Change. §2.2: The Derivative as a Function. |
|
Week 3:
Mar.7-11 |
5 |
§2.3: Differentiation Formulas. §2.4: Derivatives of Trigonometric Functions. |
6 |
§2.5: The Chain Rule. §2.6: Implicit Differentiation. |
|
Week 4:
Mar.14-18 |
7 |
§2.8: Related Rates. |
8 |
§2.9: Linear Approximations and Differentials. Chapter 3. Applications of Differentiation §3.1: Maximum and Minimum Values. |
|
Week 5:
Mar.21-25 |
9 |
§3.2: The Mean Value Theorem. §3.3: How Derivatives Affect the Shape of a Graph. |
10 |
§3.4: Limits at Infinity; Horizontal Asymptotes. |
|
Week 6:
Mar.28-Apr.1 |
11 |
§3.5: Summary of Curve Sketching. |
12 |
§3.7: Optimization Problems. |
|
Midterm 1: Saturday, 2 April | ||
Week 7:
Apr.4-8 |
13 |
§3.9: Antiderivatives. |
14 |
Chapter 4. Integrals §4.1: Areas and Distances. §4.2: The Definite Integral. |
|
Week 8:
Apr.11-15 |
15 |
§4.3: The Fundamental Theorem of Calculus. §4.4: Indefinite Integrals and the Net Change Theorem. |
16 |
§4.5: The Substitution Rule. Chapter 5. Applications of Integration §5.1: Areas between Curves. |
|
Week 9:
Apr.18-22 |
17 |
§5.2: Volumes (Disks). §5.3: Volumes by Cylindrical Shells. |
18 |
Chapter 6. Inverse Functions; Exp, log, and trig §6.1: Inverse Functions. §6.2: Exponential Functions and Their Derivatives. |
|
Week 10:
Apr.25-29 |
19 |
§6.3: Logarithmic Functions. §6.4: Derivatives of Logarithmic Functions. |
20 |
§6.6: Inverse Trigonometric Functions. §6.8: Indeterminate Forms and L'Hospital's rule. |
|
Week 11:
May 2-6 |
21 |
Chapter 7. Techniques of Integration §7.1: Integration by Parts. |
22 |
§7.2: Trigonometric Integrals. |
|
Midterm 2: Saturday, 7 May | ||
Week 12:
May 9-13 |
23 |
§7.3: Trigonometric Substitution. |
24 |
§7.4.1: Integration of Rational Functions by Partial Fractions (I, II). |
|
Week 13:
May 16-20 |
25 |
§7.4.2: Integration of Rational Functions by Partial Fractions (III, IV). |
26 |
§7.5: Strategy for Integration. |
|
Holiday: Thursday, 19 May | ||
Week 14:
May 23-27 |
27 |
§7.8: Improper Integrals. |
28 |
§: Review. |
|
FINAL EXAMS 30 May -- 11 June |