Review Problems II

1.) Given the following trusses, find out whether they are stable or unstable. If they are unstable, find

- Given $\langle f, g \rangle = \int_0^1 x f(x)g(x)dx$ on continuous functions on [0, 1].
- Show that <, > is an inner product.
- Find a, b, c such that $\{1, x + a, x^2 + bx + c\}$ is an orthogonal set i.e. each element is orthogonal to the others.
 - Find the projection of x^3 to the space spanned by $1, x + a, x^2 + bx + c$ found in (b).
 - a.) Find all roots of $z^8 = -1$ and plot them.
 - Show that if z_1z_2 and z_1+z_2 are both real, then $z_1=\bar{z_2}$.
 - Find cos(4x) in terms of cos(x) and sin(x) using complex exponentials.
 - Compute the Fourier Series of the following functions whose one period is given.

a.)
$$f(x) = \delta(x + \frac{\pi}{2}) - \delta(x) + \delta(x - \frac{\pi}{2})$$
 $f(x + 2\pi) = f(x)$

b.)
$$f(x) = \begin{cases} 0 & \text{for } -\pi \le x \le -\frac{3\pi}{4} \\ 1 & \text{for } -\frac{3\pi}{4} < x < -\frac{\pi}{4} \\ 0 & \text{for } -\frac{\pi}{4} \le x \le \frac{\pi}{4} \end{cases} & f(x+2\pi) = f(x) \end{cases}$$

$$\mathbf{c.}) f(x) = \begin{cases} 0 & \text{for } -\frac{\pi}{4} \le x \le \frac{\pi}{4} \\ 0 & \text{for } \frac{3\pi}{4} \le x \le \pi \end{cases}$$

$$\mathbf{c.}) f(x) = \begin{cases} 0 & \text{for } -\pi \le x < \pi \\ 2\pi - x & \text{for } \pi \le x < 2\pi \\ -2\pi - x & \text{for } -2\pi \le x < -\pi \end{cases}$$

$$\mathbf{d.}) f(x) = \begin{cases} xe^{-x} & \text{for } 0 < x < \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases} f(x+2\pi) = f(x)$$

$$\begin{cases}
0 & \text{for } -\pi \le x < \pi \\
0 & \text{for } -\pi \le x < \pi
\end{cases}$$

$$f(x) = \begin{cases}
0 & \text{for } \pi \le x < 2\pi \\
0 & \text{for } \pi \le x < 2\pi
\end{cases}$$

c.)
$$f(x) = \begin{cases} 2\pi - x & \text{for } \pi \le x < 2\pi \\ -2\pi - x & \text{for } -2\pi \le x < -\pi \end{cases}$$

d.)
$$f(x) = \begin{cases} xe^{-x} & \text{for } 0 < x < \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$$
 $f(x + 2\pi) = f(x)$

5.) Say $\int_0^{2\pi} |f(x)|^2 dx = 11$. Suppose that $f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$, and $c_0 = 1$, $c_1 = c_{-1} = \frac{1}{2}$.

Show that $|c_k| \leq \sqrt{\frac{1}{2}}$ for all k. (\mathbf{Hint} : Use Parseval's Identity)

- **6.**) **a.**) Write F_6 and F_6^{-1} .
- **b.)** Express $\begin{bmatrix} 1\\0\\-1\\-1\\0\\1 \end{bmatrix}$ as a linear combination of the columns of F_6 .
- c.) Find the matrices A, B so that

$$F_6 = A \left[\begin{array}{c|c} F_3 & 0 \\ \hline 0 & F_3 \end{array} \right] B$$

- 7.) Let f(x) = cos(2x)
- **a.**) Discretize f(x) for N = 4 to get \overrightarrow{f}
- **b.)** Find the **DFT** of \overrightarrow{f} and plot it.
- **c.**) Find the continuous complex FT of f(x) and compare with its **DFT**.
- **8.)** Given c = (3, 1, -1, 4) and d = (-1, 0, 5, 3).
- **a.)** Compute c*d and $c\circledast d$ for N=4
- **b.**) For N=4, write a filter that takes the signal

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \longrightarrow \begin{bmatrix} c_0 \\ c_1 \\ 0 \\ 0 \end{bmatrix} \text{ in the frequency domain. }$$