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My research interests lie within differential geometry, geometric analysis and differential topology,
primarily in the field of calibrations, calibrated geometries and manifolds with special holonomy. My
current research interests include: plurisubharmonic functions and convexity in calibrated geome-
tries, φ-free submanifolds of calibrated manifolds, and manifolds with G2 or Spin(7) structures.

Working on different calibrated manifolds, I have obtained results on:
• geometry of φ-critical submanifolds with some explicit examples
• topology of strictly φ-convex domains in various calibrated manifolds
• topological restrictions for a submanifold to be φ-free in some calibrated manifolds
• construction of manifolds with Spin(7)-holonomy
• existence of symplectic 8-manifolds with Spin(7)-structure.
I will start my statement with an introduction to some background material, then give a summary

of my results with some details, and end with my present and future research projects.

1. Introduction

1.1. Calibrated Geometries. Calibrated geometries are introduced by Harvey and Lawson in
the foundational paper [HL1]. These are the geometries of minimal submanifolds of a Riemannian
Manifold (M, g) which are determined by a closed differential p-form φ, called a calibration, which
satisfies the property that φ|ξ ≤ vol|ξ for any oriented tangent p-plane ξ ⊂ TxM at any point x ∈M .
A Riemannian manifold (M, g) together with a calibration φ is called a calibrated manifold and any
oriented p-dimensional submanifold N of M with φ|N = volN is called a calibrated submanifold or
φ-submanifold. The fundamental observation here is that all calibrated submanifolds are minimal,
and any compact oriented φ-submanifold is volume minimizing in its homology class.

A Kähler form ω provides the basic and classical example of a calibration. In fact the form
φ = ωp

p! for 1 ≤ p ≤ n on a Kähler manifold of dimension n is a calibration, and φ-submanifolds are
precisely the p-dimensional complex submanifolds. In fact calibrated geometry is closely connected
with the theory of Riemannian holonomy groups because Riemannian manifolds with special holo-
nomy usually come equipped with one or more natural calibrations. This can be summarized in the
following table using Berger’s classification of holonomy groups.

Holonomy Type of Manifold Calibration

U(n) Kähler Manifold
ωp

p!
(ω=Kähler form)

SU(n) Calabi-Yau Manifold Re(Ω) (Ω=Holomorphic Volume form)

Sp(n) · Sp(1) Quaternionic Kähler Manifold Ψ =
1

3
(
ω2

I

2
+
ω2

J

2
+
ω2

K

2
)

G2 G2-Manifold ϕ (associative 3-form)

G2 G2-Manifold ∗ϕ (co-associative 4-form)

Spin(7) Spin(7)-Manifold Φ (Cayley 4-form)

Calibrated Geometries, especially on spaces with special holonomy, have strong relations with
gauge theories in higher dimensions [AS], [T], mirror symmetry [SYZ], and modern string theory in
Physics (cf. [HL1], [J1]). Hence, understanding the structure of these special geometries plays an
important role and forms a very active and hot research area for geometers and physicists.
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1.2. Plurisubharmonic Functions and Convexity on Calibrated Manifolds. Analysis and
geometry have always been very difficult on calibrated manifolds (M,φ) due to lack of analogues of
holomorphic functions and curves existing in Kähler geometry. Recently, Harvey and Lawson brought
in new tools, called φ-plurisubharmonic functions to do analysis on any calibrated manifold by
canonically generalizing the classical plurisubharmonic functions in Kähler manifolds to all calibrated
manifolds. It turns out that these new functions exist in abundance and share properties similar to
the classical ones in complex analysis.

In [HL2] φ-plurisubharmonic functions are defined by a second order differential operator Hφ(f)
called the φ-Hessian which is defined from the set of smooth functions on M to the set of smooth
p-forms on M by

Hφ : C∞(M) → Ep(M)

Hφ(f) = ddφf −∇∇f (φ)

where d is the de Rham differential, and dφ : C∞(M) → Ep−1(M) is given by

dφf ≡ ∇f lφ.

If φ is parallel, then we get Hφ = ddφ

On a calibrated manifold (M,φ), an oriented tangent p-plane ξ ⊂ TxM at x ∈ M is called a φ-
plane if φ|ξ = volξ and the set of all φ-planes is denoted by G(φ). A function f ∈ C∞(M) is defined
to be φ-plurisubharmonic if Hφ(f)(ξ) ≥ 0 for all ξ ∈ G(φ). It is strictly φ-plurisubharmonic
at a point x ∈ M if Hφ(f)(ξ) > 0 for all φ-planes ξ at x. We denote the set of φ-plurisubharmonic
functions on a calibrated manifold M by PSH(M,φ). In the Kähler case, φ-plurisubharmonic
functions are exactly the classical plurisubharmonic functions since it is easy to show that ddω = ddc

and ω-planes are complex lines.
A fundamental result is that the restriction of a φ-plurisubharmonic function to a φ-submanifold

N is subharmonic in the induced metric on N.
One of the first outcomes of introducing these canonical new functions on calibrated manifolds

is φ-convexity, which is the generalization of pseudoconvexity on complex manifolds to calibrated
manifolds. A calibrated manifold (M,φ) is called (strictly) φ-convex if it admits a (strictly) φ-
plurisubharmonic proper exhaustion function f : M → R. We note that in complex geometry with
Kähler calibration ω, strictly ω-convex manifolds are Stein.

1.3. φ-free Submanifolds. In any calibrated manifold, the φ-free submanifolds are the analogues
of totally real submanifolds in complex manifolds. Just as totally real submanifolds are used to
construct Stein manifolds with different homotopy type, φ-free submanifolds are used to construct
strictly φ-convex manifolds in enormous families with every topological type allowed by Morse theory.

Let (M,φ) be a calibrated manifold. A closed submanifold N ⊂ M is called φ-free if there are
no φ-planes tangential to N i.e. no ξ ∈ G(φ) with spanξ ⊂ TN . If the calibration is a p-form, then
obviously any submanifold of dimension < p is φ-free. Generically, this is true for local submanifolds
of dimension p.

The φ-free dimension of a calibrated manifold (M,φ), denoted by fd(φ), is defined to be
the largest dimension of a φ-free vector subspace of TxM for x ∈ M , which also determines the
maximum possible dimension of a φ-free submanifold. A fundamental result, following this definition,
is that any strictly φ-convex calibrated manifold (M,φ) has the homotopy type of a CW-complex of
dimension ≤ fd(φ). This result is a generalization of the Andreotti-Frankel Theorem [AF] of Stein
manifolds.

For a Kähler manifold (M,ω) of complex dimension n, fd(ω) = n and ω-free submanifolds are
totally real. For a quaternionic Kähler manifold (M,Ψ) of real dimension 4n, where Ψ = 1

6{w
2
I +

w2
J + w2

K} we get fd(Ψ) = 3n.
If (M,ϕ) is a 7-dimensional G2-manifold with associative calibration ϕ, then fd(ϕ)=4. Moreover,

the free dimension of coassociative calibration ∗ϕ is also equal to 4.
If (M,Φ) is an 8-dimensional Spin(7)-manifold with Cayley calibration Φ, then fd(Φ)=4.
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2. Past Research

2.1. Topology of φ-Convex Manifolds and φ-Free Submanifolds. (cf. [U], [U1]) In [HL1] Har-
vey and Lawson show that if N is a φ-free submanifold of (M,φ), then there exists a fundamental
system F(N) of strictly φ-convex neighborhoods of N, each of which admits a deformation retrac-
tion onto N . Hence the existence of φ-free submanifolds with different homotopy types ensures the
existence of lots of strictly φ-convex domains in (M,φ). Using techniques from differential topology,
I studied the existence of φ-free submanifolds in various calibrated manifolds and obtained results
about their topology. Moreover, in certain cases I constructed examples with different homotopy
types.

On a quaternionic Kähler or HyperKähler manifold (M4n,Ψ) with the quaternionic calibration
Ψ = 1

6{w
2
I + w2

J + w2
K} I showed that arbitrary small Cr-perturbations (r>0) of any k-dimensional

closed oriented submanifold N ⊂M in M will be Ψ-free if 5k < 12n+ 4. In particular, if M = Hn,
then almost all Euclidean motions will make N Ψ-free. Moreover, I constructed a closed oriented
Ψ-free submanifold of Hn with dimension 3n, which proves the existence of a strictly Ψ-convex do-
main Ω with H3n(Ω,Z) 6= 0, where fd(Ψ) = 3n.

On a G2-manifold (M,ϕ) with associative calibration ϕ, I showed that for every connected sub-
manifold N ⊂ M of dimension <4 (compact or non-compact) there exists a strictly φ-convex G2-
manifold which is homotopy equivalent to N.

On a G2-manifold (M, ∗ϕ) with coassociative calibration ∗ϕ, I proved that if N ⊂M is ∗ϕ-free,
then the Euler Characteristic of N , χ(N) is equal to zero. This shows that the Euler Characteristic
is an obstruction for the existence of a ∗ϕ-embedding of a manifold into a G2-manifold. Recently,
using h-principle I showed that this is the only obstruction as I will explain in the following section.

2.2. φ-Critical Submanifolds. (cf. [U], [U2]) Calibrated geometry is interesting and rich if we
have lots of calibrated submanifolds, but this is not always the case, not even if the set of φ-planes
G(φ) is large. In [HL2] Harvey and Lawson canonically extend their definition of φ-submanifolds
to φ-critical submanifolds in such a way that every φ-submanifold is φ-critical. Despite the lack of
non-trivial examples of φ-submanifolds, we still get a very rich geometry if we consider all φ-critical
submanifolds. In my thesis [U] and later in my paper [U2], I study the geometry of φ-critical subman-
ifolds, where I found non-trivial examples and proved an important result about their minimality.

If φ is a calibration on M , then we see that φ : G+
k (TxM) −→ [−1, 1], for each x ∈ M , where

G+
k (TxM) is the Grassmannian of oriented k-planes in TxM . Let us denote the critical points of

φ|G(k,TxM) by Gcr(φ)x and the associated sub-bundle in Grassmannian by Gcr(φ). Then, any ori-
ented k-dimensional submanifold N ⊂M is called a φ-critical submanifold with critical value c if
TxM ∈ Gcrc (φ), for all x ∈ M where Gcrc (φ) = {ξ ∈ Gcr(φ) : φ(ξ) = c}. As a result, φ-submanifolds
are φ-critical submanifolds with critical value 1 since G(φ) = Gcr1 (φ)

If we consider Hn with quaternionic calibration Ψ = 1
6{w

2
I +w2

J +w2
K}, then φ-submanifolds are

just quaternion lines. But, I showed that ± 1
3 are critical values of Ψ, and Ψ-critical submanifolds

include complex isotropic submanifolds for any complex structure defined by right multiplication by a
unit imaginary quaternion. In particular for n=2 they include all complex Lagrangian submanifolds.

We know that φ-submanifolds are minimal and any compact oriented φ-submanifold is homolog-
ically volume minimizing. In [U2] I prove that if a non-zero positive (negative) critical value c of a
calibration φ is a local maximum(minimum), then φ-critical submanifolds with critical value c are
minimal and locally volume minimizing. One corollary of this result is that we may find locally vol-
ume minimizing submanifolds by looking for local maximum points of a closed form φ on a compact
manifold without ever computing the comass of φ, which is usually very difficult.

2.3. Warped-like Product 8-manifolds with Spin(7)-holonomy. (cf. [UU]) In [YO] Yasui
and Ootsuka give an explicit example of a warped-like metric with Spin(7)-holonomy on M =
S3×S3×R2. Later in [BU], Bilge and Uğuz consider any warped-like metric g on M = M3

1×M3
2×R2,

where M1 and M2 are complete, simply connected 3-manifolds with metrics g1 and g2 respectively
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and show that if (M, g) has holonomy Spin(7), then each (Mi, gi) is isometric to S3 with constant
positive sectional curvature and up to a gauge transformation, the only solution is the explicit metric
on M = S3 × S3 × R2 given by Yasui and Ootsuka.

In [UU] with S. Uğuz, I consider similar warped-like metrics on M = M4
1 ×M3

2 ×R, where M4
1 is a

simply connected parallelizable 4-manifold with metric g1, and M3
2 is a simply connected 3-manifold

with g2 and study when the metric has Spin(7)-holonomy. We show that there will be two cases. In
the first case, M is isometric to M = M3

1×R×M3
2×R, which is actually isometric to the case studied

by Bilge and Uğuz. In the second case, we prove that (M4
1 , g1) must have constant negative sectional

curvature and (M3
1 , g2) is isometric to S3 with constant positive sectional curvature. Moreover, by

considering the structure equations, we conclude that (M4
1 , g1) is a solvable and non-unimodular Lie

group with a left invariant metric.

3. Present and Future Research Projects

3.1. h-Principle and φ-Free Embeddings. Homotopy principle (h-principle), developed by M.
Gromov, Y. Eliashberg, et al. is a very powerful method to reduce existence problems in differential
geometry and partial differential equations to homotopy-theoretic problems (cf. [G], [EM]). One
common application of the h-principle is to prove the existence of special embeddings. M. Gro-
mov proves that the h-principle holds for totally real embeddings [G]. Since the generalization of
totally real submanifolds to calibrated manifolds are precisely the φ-free submanifolds, I study the
h-principle for φ-free embeddings.

In [U3], by expressing the φ-free condition in the terminology of the h-principle, namely as a dif-
ferential relation, I prove that all forms of the h-principle hold for ∗ϕ-free and Φ-free embeddings of
oriented 4-dimensional manifolds N4 into R7 and into R8 respectively, where ∗ϕ is the coassociative
and Φ is the Cayley calibration. Moreover, all forms of the h-principle hold for Ψ-free embeddings of
oriented k-dimensional manifolds Nk into Hn, where k ≤ 3n and Ψ is the quarternionic calibration.
In addition to these, I prove that a closed oriented 4-manifold N4 can be embedded as a ∗ϕ-free or
Φ-free into R7 or R8 respectively if the Euler characteristic of N is equal to zero.

In [U3] we only prove existence results about φ-free embeddings. My future plan is to find the
example of an explicit ∗ϕ-free embedding of a closed oriented 4-manifold into R7. My first candidate
to try is S1×S3, whose canonical embedding into R7, i.e. f : S1×S3 ↪→ R2×R4×R is not ∗ϕ-free.

3.2. Examples of φ-Critical Submanifolds. In [U2] I show that if the positive(negative) critical
value of the calibration φ is a local maximum(minimum), then corresponding φ-critical submanifolds
are locally volume minimizing, hence minimal. Recently in [R], C. Robles shows that if φ is a parallel
calibration, then the φ-critical submanifolds corresponding to a non-zero critical value are minimal.
From these results, we see that the φ-critical submanifolds are a very good source of minimal
submanifolds, especially in higher codimension.

In [U] I prove that ± 1
3 are critical values of the quaternionic calibration Ψ = 1

6{w
2
I + w2

J + w2
K}

on Hn and for n = 2, the set of all Ψ-critical planes with critical value ± 1
3 are complex Lagrangian

4-planes with any complex structure defined by an imaginary quaternion. I also show that ± 1
3 are

neither local maximum nor local minimum, hence they don’t satisfy the criterion I proved. However,
Ψ is parallel so the corresponding Ψ-critical submanifolds are minimal by the criterion of Robles. (In
[LW] these ± 1

3 Ψ-critcal submanifolds are actually called as hyperlagrangian.) In [U] I prove all my
results about the quaternionic calibration Ψ = 1

6{w
2
I +w2

J +w2
K} on Hn using elementary methods

which take a lot of calculations. Currently I am writing a shorter proof of these results which also
works on any 8-dimensional quaternionic Kähler manifold and also trying to find more examples of
hyperlagrangian submanifolds [U5].

In [U2] I study only one example of φ-critical geometry, but I want to examine more examples.
J.Zhou in [Z] shows that most of the well-known calibrations (Kähler, special Lagrangian, associative,
coassociative and Cayley) don’t have critical values other than +1 and -1. Hence in these cases,
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φ-critical geometry is the same as calibrated geometry. Therefore, I plan to continue investigating
the family of calibrations Ψ(λ) = λ1

1
2w

2
I + λ2

1
2w

2
J + λ3

1
2w

2
K on Hn, where λ = (λ1, λ2, λ3) ∈ R3 lies

in the convex body defined by | λj |≤ 1, j = 1, 2, 3 and | λ1 + λ2 + λ3 |≤ 1. I think this family
is a good source for critical values different than -1 and +1 since the calibration I studied in [U2],
Ψ = 1

6{w
2
I + w2

J + w2
K}, is just a special case of this family where λ = ( 1

3 ,
1
3 ,

1
3 ). Details about this

family of calibrations are available in [BH].

3.3. Symplectic 8-manifolds with Spin(7)-structure. (with S. Uğuz) Given a smooth manifold
M , one can ask for the existence of two different structures and their compatibility. For any smooth
7-dimensional manifold M , Arikan, Cho, and Salur studied these problems for contact and G2

structures, and found examples admitting both contact and G2 structures which were compatible
in a certain way [ACS]. There is a similar existence and compatibility problem for 8-dimensional
smooth manifolds for symplectic and Spin(7) structures. I have been studying this problem with
Uğuz.

In [P] F. Pasquotto shows that in dimension 8 the geography of symplectic manifolds doesn’t
differ from that of almost complex manifolds by proving that any ordered quintuple of integers
which are admissible as the system of Chern numbers of an almost complex 8-dimensional manifold
can also be realized by a closed, connected symplectic 8-manifold.(Hirzebruch showed the necessary
and sufficient conditions for a given system of integers to appear as the system of Chern numbers of
an almost complex manifold by using the Riemann-Roch theorem [H], and these conditions are given
by three relations in dimension 8.) Moreover, the existence of a Spin(7)-structure on an oriented 8-
dimensional manifold M is determined by the second Stiefel-Whitney class and an equation involving
Pontryagin classes and the Euler class which can also be written in terms of Chern classes for an
almost complex manifold. In [U3] we show that three relations for the existence of symplectic
structure together with two equations for the existence of Spin(7)-structure have solutions which
proves the existence of many closed, connected symplectic manifolds with Spin(7)-structure without
needing any compatibility. By studying the examples of Pasquotto, we can construct lots of examples.
As a future project, we plan to study compatibility between these two structures in certain ways
like it was studied in [ACS].

3.4. Cotton Flow. (with A. U. Ö. Kişisel) In [KST] Kişisel, Sarıoğlu and Tekin define the Cotton
flow which flows the initial metric in a direction proportional to Cotton-York tensor on 3-dimensional
manifolds and whose fixed points are conformally flat metrics. They study the evolution of the nine
homogeneous geometries (R3, H3, H2 × R, S2 × R, SU(2), Isom(R2), Solv, Nil, SL(2,R)) in
detail, both analytically and numerically. However, they didn’t prove the short time existence of
the flow in the general case. Together with Kişisel, I plan to determine the conditions on the initial
metric for which the short time existence problem can be solved. We have been studying the solutions
of the short time existence problem for other flows, especially higher order flows, since the Cotton
flow is third order and techniques in this order are not as developed as in the second order case.
Moreover, we are also interested in finding Cotton solitons and this problem seems a little bit easier
than the short time existence problem.
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