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I am studying Arithmetic Algebraic Geometry and Number Theory.

Algebraic equations and their arithmetical properties have been an interest mankind since the
times of Pythagoras and Diophantus, which were a milestone in their time. For many centuries such
problems have fascinated both serious mathematicians (Fermat, Gauss, ...) and amateurs alike.
However, developments in recent years have transformed the subject into one of the central areas of
mathematical research, which has relations with, or applications to, virtually every mathematical
field, as well as an impact to contemporary everyday life. The interaction of arithmetic and geometry
have led to a complex and far-reaching web of conjectures proposing a deep explanation for the
observed phenomena. At the same time, this interaction and the combination of the new, powerful
methods have enabled the solution of some of these conjectures as well as of some long-standing ones
(Fermat’s Last Theorem). My study is focusing on two subjects namely, Galois Module Structure
and Distribution of primes on certain products.

Galois Module Structure

The normal basis theorem implies that if N/K is a finite Galois extension of number fields with
Galois group G, then N is a free K[G]-module of rank one. In particular, N is a free Q[G]-module.
Let ON and OK be the ring of integers of N and K respectively. Then we can ask for the analogous
statement, namely, “Is ON a free module over the group ring Z[G]?” The first observation regarding
this question belongs to E. Noether.

Theorem 1. (E. Noether) Let N/K be a finite Galois extension of number fields with Galois group
G. Then the ring of integers, ON is a projective Z[G]-module if and only if N/K is at most tamely
ramified.

When N/K is tamely ramified, the obstruction to ON to be a stably free Z[G]-module is the
class (ON ) in the class group Cl(Z[G]). Fröhlich’s conjecture, proved by M.Taylor in [T], gives an
interesting description for this class:

Theorem 2. (M. Taylor) We have the following equality,

(ON ) = WN/K (1)

in Cl(Z[G]). Here WN/K is the “root number class”; the class WN/K has order two and is given
by the signs of the ε-constants in the functional equation of the Artin L-functions of symplectic
representations of G.

The works of Chinburg and of Chinburg, Erez, Pappas and Taylor ([CEPT], [CPT]) generalize
Fröhlich’s conjecture by relating the ε-constants with the Galois modules attached to a group action
on an arithmetic scheme. It turns out that one can consider more general equivariant projective
Euler characteristics: Suppose that X is a scheme projective and flat over Z which supports a
tame action of the finite group G. For any coherent sheaf F on X which supports a G-action that
is compatible with the action of G on X one can define following Chinburg [C] the equivariant
projective Euler characteristics χ(X,F) ∈ Cl(Z[G]). The calculation of these Euler characteristic
often connects to other fundamental problems in Number Theory. A recent method, developed by
Chinburg, Pappas and Taylor in [CPT1], shows how to calculate the Euler characteristic of coherent
sheaves on projective flat schemes over Z on which finite group acts. Unlike other techniques, this
one does not neglect any torsion information if the base scheme has dimension less than 5. Also
an illustration of the calculation is presented on an example. In particular, they determined the
structure of the lattice of weight 2 cusp forms for Γ1(p) which have integral Fourier expansions as a
module for the action of the finite group of diamond Hecke operators. This is done by calculating
the equivariant Euler characteristic χ(X,OX) where X is a certain integral model of the modular
curve X1(p).
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My study can be thought of as a generalization of this example. I calculated the equivariant
Euler characteristic of k-th power of the “twisted” canonical sheaf over an integral module of the
modular curve X1(p) (here some twists are allowed along a fibral divisor at p for some technical
reasons). I found a lower bound to the degree of the twist which guarantees that the first cohomology
group vanishes. Consequently, the structure of the lattice of “twisted” cusp forms of weight 2k and
Nebentypus character can be obtained as a module for the diamond Hecke operators. Here twist
means that we allow the Fourier coefficients to have denominator a certain (bounded) power of a
uniformizer over p .

Distribution of primes on certain products

Let us denote the product of the first n terms of an integer valued sequence ak by An. The
question of how the powers of the prime factors of this product are distributed as n grows appears
in various guises in number theory. For example, if we take ak = k, then we get An = n!. In this
case, we can easily express the largest power of p dividing An for each prime p = n in terms of p
and n. On the other hand, one may ask many nontrivial questions concerning all of these powers
simultaneously. For instance, let us examine whether or not An can be a square for n = 2. A proof
of impossibility can be given using the famous Bertrands postulate.

In my study, by choosing the elements of the sequence ak as the values of a polynomial at integers,
we aim at answering similar questions as well as obtaining general results about the distribution
of the powers. As a next step, taking ak = k2 + d where d is a positive integer, we wish to show
that An is not a square for sufficiently large values of n (depending on d), and explicitly list the
values of n for which it is a square for many values of d. This question is solved by Cilleruelo [Ci]
for d = 1: In this case, An is a square only for n = 3. For larger values of d there is no complete
answer yet. In another paper, Ambederhan, Medina and Moll [AMM] take ak = kp + 1, and give a
proof that for p = 3 prime and n = 12 the product An is not a square. However, it was shown via
a counterexample by Gürel ve Kisisel [GK] that this proof is incorrect, and for p = 3 it was shown
in the same paper that An is never a square by using another method. Let us remark that, in these
proofs, tools like Bertrands postulate mentioned in the paragraph above could not be used, since
even the infinitude of primes of the form k2 + 1 is an open problem aging more than 200 years.
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