METU - NCC

		Precalculus Midterm	į
Code	: Math 100	Last Name:	
Acad.Year	:: 2012-2013	Name :	Student No.:
Semester	: Spring	Department:	Section:
Date	: 21.04.2013	Signature:	
Time	: 09:40	10 QUESTIONS ON 4 PAGES	
Duration	: 100 minutes	TOTAL 100 POINTS	
1 (9) 2 (9)	3 (9) 4 (9) 5 (9) 6	(9) 7 (9) 8 (10) (10) 10 (12)) 11 (5)

1. (9 pts) Find the equation of the line passing through (2,-3) and perpendicular to the line y = 2x + 5.

$$y-(-3) = m(x-2)$$
 $m = -\frac{1}{slope of y=2x+5} = -\frac{1}{2}$
 $y = -\frac{1}{2}x-2$
 $y = -\frac{1}{2}x-2$

2. (9 pts) Find all x satisfying |x - 3| - |x - 1| = 2

$$x>3$$
 $(x-3)-(x-1)=2. \Rightarrow -2=2$ No solution.

$$1 \le x < 3$$
 $-(x-3)-(x-1)=2 \Rightarrow -2x+4=2 \Rightarrow x=1$
 $\times < 1$ $-(x-3)-(-(x-1))=2 \Rightarrow 2=2$ All the numbers $\{e_{55}\}$ than 1

$$(-\infty, 1]$$

3. (9 pts) Write the complex number $(i^{2012} - i^{2013})(1+i) + (2-4i)\frac{4}{-2-i}$ in the standard form, i.e. a + bi.

$$1^{2012} = (1^4)^{503} = 1^{503} = 1$$
 $1^{2013} = (1^4)^{503} = 1$

So, we get

$$(1-i)(1+i) + 2(1-2i) + 4(2-i) - (2+i)(2-i)$$

2+8%

$$(1+1) + 2 \cdot (1-2i)(2-i) \cdot 4$$

$$=2+2(2-2-4i-i)4=2-2(-4i)$$

4. (9 pts) Find three consecutive even integers so that the first plus twice the second is twice the third.

$$n, n+2, n+4$$
 $n+2(n+2) = 2 \cdot (n+4)$
 $3n+4 = 2n+8$

- n = 4
- 5. (9 pts) Find the set of solutions to the inequality $\frac{x^2-2x-4}{x^3+3x} \leq 0$

$$x^2 - 2x - 4 = 0$$

$$\Delta = (-2)^{2} - 4(-4) \cdot 1 = 20 \quad x_{12} = \frac{2 + \sqrt{20}}{2} = 1 + \sqrt{5}$$

$$\times^{3} + 3x = x(x^{2} + 3) = 0 \Rightarrow x = 0 \quad [-\infty, 1 - \sqrt{5}] \cup (0, 1 + \sqrt{5}]$$

$$x^3 + 3x = x(x^2 + 3) = 0 \Rightarrow x = 0$$

$$[-\infty, 1-15]U(0, 1+15]$$

6. (9 pts) Let the points A=(5,-2) and B=(1,4) on the circle C. If |AB| is equal to the diameter(ap), then find the standard equation of the circle C.

$$A(5,-2)$$
 $M = (\frac{5+1}{2}, -\frac{2+4}{2}) = (3,1)$
 $M = (\frac{5+1}{2}, -\frac{2+4}{2}) = (3,1)$
 $M = (\frac{5+1}{2}, -\frac{2+4}{2}) = (3,1)$
 $M = (\frac{5+1}{2}, -\frac{2+4}{2}) = (3,1)$

$$(x-3)^2+(y-1)^2=13$$

radius =
$$d(M,A) = d(M,B) = \sqrt{(3-1)^2 + (1-4)^2}$$

= $\sqrt{4+9} = \sqrt{13}$

7. (9 pts) Divide $P(x) = 3x^4 + 2x^2 - 4$ by $D(x) = x^2 + x$ and find the quotient and the remainder.

$$\begin{array}{r|rrrr}
3x^{4} + 2x^{2} - 4 & x^{2} + x \\
-3x^{4} + 3x^{3} & 3x^{2} - 3x + 5 \\
\hline
-3x^{3} + 2x^{2} - 4 \\
-3x^{3} - 3x^{2} \\
\hline
-3x^{2} - 4 \\
-5x^{2} + 5x \\
-5x - 4
\end{array}$$

$$Q(x) = 3x^{2} - 3x + 5$$

$$R(x) = -5x - 4$$

8. (2x5=10 pts) Let f(x)=3x+2, $g(x)=\frac{x+3}{x}$ and $h(x)=\sqrt{4+x}$. Compute the following values, if defined.

(f+g)(1)	e
$(f \circ g)(3)$	8
$(g \circ g)(-3)$	Not Defined
$(g \circ h \circ f)(1)$	2
$(g \circ (\frac{f}{h}))(0)$	4

9.
$$(5+5=10 \text{ pts})$$
 Given $f(x) = 2x^2 + 4x - 1$
(a) Find a, h, k so that $f(x) = a(x+h)^2 + k$
 $2x^2 + 4x - 1 = 2(x^2 + 2x + 1 - 1) - 1$
 $= 2(x+1)^2 - 3$

$$a=2$$
 $h=$ $k=-3$

(b) Use (a) to compute
$$f^{-1}(x)$$

1)
$$y = 2x^2 + 4x - 1 = 2(x+1)^2 - 3$$

2)
$$x = 2(y+1)^2 - 3$$

3)
$$x+3 = 2(y+1)^{2}$$

$$\frac{x+3}{2} = (y+1)^{2} \quad y = \pm \sqrt{\frac{x+3}{2}} - 1$$
(Both are accepted.)

$$f^{-1}(x) = -\sqrt{\frac{\chi+3}{2}} - \sqrt{\frac{\chi+3}{2}}$$

10. (12 pts) The graph of f(x) is given below. Graph g(x) = 1 - 2f(x+2) in the blank grid. Show individual steps of the transformation of the graph of f(x) to the graph of g(x).

11. (5 pts) Describe a function g(x) in terms of f(x) if the graph of g is obtained by reflecting the graph of f with respect to y = x line first and then shifting 3 units down.