Determinants:

1. Find A^{-1} using the adjoint matrix:

$$
A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
0 & 1 & -3 \\
0 & 0 & 2
\end{array}\right]
$$

2. Solve the following system by using Cramer's rule:

$$
\begin{array}{r}
4 x+5 y=2 \\
11 x+y+2 z=3 \\
x+5 y+2 z=1
\end{array}
$$

3. Prove that if $\operatorname{det}(A)=1$ and all entries in A are integers, then all the entries in A^{-1} are also integers.
4. Evaluate the following determinants by reducing to row echelon form:

$$
\left|\begin{array}{lll}
0 & 3 & 1 \\
1 & 1 & 2 \\
3 & 2 & 4
\end{array}\right|, \quad\left|\begin{array}{llll}
2 & 1 & 3 & 1 \\
1 & 0 & 1 & 1 \\
0 & 2 & 1 & 0 \\
0 & 1 & 2 & 3
\end{array}\right|
$$

5. Use row reduction to show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(b-a)(c-a)(c-b)
$$

6. Let A be an $n \times n$ invertible matrix. Find the determinant of $2\left(A^{2}\right)^{-1}$ in terms of $\operatorname{det}(A)$.
7. Using determinants, find the equation of the line through the points $(1,3)$ and $(2,5)$.
8. Find the equation of the conic section passing through $(0,0),(0,-1),(2,0),(2,-5)$ and $(4,-1)$. What type of conic is it?
9. Find the equation of the plane passing through $(2,3,1),(2,-1,-1),(1,2,1)$.
