Determinants:

1. Find A^{-1} using the adjoint matrix:

$$A = \begin{bmatrix} 2 & -3 & 5\\ 0 & 1 & -3\\ 0 & 0 & 2 \end{bmatrix}$$

2. Solve the following system by using Cramer's rule:

$$4x + 5y = 2$$
$$11x + y + 2z = 3$$
$$x + 5y + 2z = 1$$

3. Prove that if det(A) = 1 and all entries in A are integers, then all the entries in A^{-1} are also integers.

4. Evaluate the following determinants by reducing to row echelon form:

10	9	1	2	1	3	1	
	о 1		1	0	1	1	
1	T	2 ,	0	2	1	0	
3	2	4		1	า ก	2	
			0	T	Ζ	9	

5. Use row reduction to show that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$$

6. Let A be an $n \times n$ invertible matrix. Find the determinant of $2(A^2)^{-1}$ in terms of det(A).

7. Using determinants, find the equation of the line through the points (1,3) and (2,5).

8. Find the equation of the conic section passing through (0,0), (0,-1), (2,0), (2,-5) and (4,-1). What type of conic is it?

9. Find the equation of the plane passing through (2,3,1), (2,-1,-1), (1,2,1).