METU - NCC

LINEAR ALGEBRA

SHORT EXAM 1

Code : MAT 260Acad.Year: 2013-2014		Last Name:	
		Name :	
Semester	: SPRING	Student \# :	
Date	: 27.03.2014	Signature	
Time	: 17:40 : 40 min		3 QUESTIONS ON 2 PAGES TOTAL 100 POINTS

1.(10pts) Let $E=\{(1,2,3),(1,1,-1)\}$. Show that E is linearly independent and find a basis of \mathbb{R}^{3} which contains E (or extend it to a basis of \mathbb{R}^{3}), justify your answer.
2.(10pts) Let $S=\{a, b, c\}$. Show that

$$
\mathcal{U}=\{f \in \boldsymbol{\operatorname { F u n }}(S): f(a)-f(b)+2 f(c)=0\}
$$

is a subspace of $\operatorname{Fun}(S)$. Find a basis of \mathcal{U}, justify your answer.
3.(10pts) Let W be the subspace of $\mathcal{P}_{3}(\mathbb{R})$ spanned by $E=\left\{x^{3}, x^{3}-x^{2}, x^{3}+x^{2}, x^{3}-1\right\}$. Find a linearly independent subset of E spanning W.

