METU - NCC

LINEAR ALGEBRA SHORT EXAM 1	
Code $: MAT \ 260$	Last Name:
Acad.Year: 2013-2014	Name :
Semester $: SPRING$	Student $\#$:
Date : 27.03.2014	Signature :
Time : 17:40	3 QUESTIONS ON 2 PAGES
Duration : $40 \min$	TOTAL 100 POINTS
1. (10) 2. (10) 3. (10)	

1.(10pts) Let $E = \{(1,2,3), (1,1,-1)\}$. Show that E is linearly independent and find a basis of \mathbb{R}^3 which contains E (or extend it to a basis of \mathbb{R}^3), justify your answer.

2. (10pts) Let $S = \{a, b, c\}$. Show that

$$\mathcal{U} = \{ f \in \mathbf{Fun}(S) : f(a) - f(b) + 2f(c) = 0 \}$$

is a subspace of $\mathbf{Fun}(S)$. Find a basis of \mathcal{U} , justify your answer.

3.(10pts) Let W be the subspace of $\mathcal{P}_3(\mathbb{R})$ spanned by $E = \{x^3, x^3 - x^2, x^3 + x^2, x^3 - 1\}$. Find a linearly independent subset of E spanning W.