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approach 0. To do this we use our knowledge of the sine function. Because the sine of
any number lies between —1 and 1, we can write

@ —l==sin—=1

Any inequality remains true when multiplied by a positive number. We know that x> = 0
for all x and so, multiplying each side of the inequalities in by x%, we get

as illustrated by Figure 8. We know that

limx*=0 and Jim (—x*) =0

x—0 x—0

Taking f(x) = —x% g(x) = x? sin(1/x), and h(x) = x” in the Squeeze Theorem, we
obtain

FIGURE 8
y=x?sin(l/x) lii% x%sin = =0

Exercises

1. Given that 3-8 Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).
lirr% flx)=14 1irr% glx) = —2 1irr% h(x) =0

: 3. lim Gx*+2x* —x+ 1)

x— =2

find the Limits that exist. If the limit does not exist, explain why.
4, liml (x* = 30)(x* + 5x + 3)

(a) lim [£(x) + 54(:)] ) tim [g(0)]
: .3 =2
1 d) im ——— C lm ———— R P
(c) Tim vf(x) @ m= 5. lim >5 > 6. lim Vi +3u+6
g - g(0h(x) : ) 2
(&) lim-——+ (f) tim——— , . ; P =2
x—2 h(x) x—2 f(x) 1. }liré (] + \/;)(2 - 6x2 + x%) 8. }E’)rzl 7—_—3;:?
2. The graphs of f and g are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why. \/ 2%% + 1
9. lim [
x—2 3x — 2

10. (a) What is wrong with the following equation?

2+x—6

x —

x+3

(a) 113 [f(x) + g(x)] (b) hg} [flx) + g(x)] (b) In view of part (a), explain why the equation
2 _

(© tim [ F(99(0)] @ im 25 tim 20— i (2 + 3

(e) 112% [x'f(x)] () 11711} 3+ f(x) is correct.
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32 Evaluate the limit, if it exists.

. 2+x—6 2 1 x2+5x+4
m == . lim ————
=2 x — 2 =4 x% 4+ 3x — 4
x*—x+6 x*— 4x
lim ~—m— 14, lim —————
i x—2 s x> —3x—4
. -9 6. i 2x2 + 3x + 1
im ———  im =
e Y YR P SN T 22— 3
. (=54+h?*-25 . 2+ hP-38
lim ———— 18 lim —————
h—0 h—0 h
i x+ 2 20, 1i -1
m . lim
r242x3+8 PP
. W9+ h -3 . AAu+1-3
Hm 22. lim ——
B=>0 h =2 u— 2
.1
T+ 2x 4 1
Tim * A fim —— =
——4 4 + x == x*—1
YA B R VA . I 1
li 26. lm | — — —
10 t =0\ ¢ A+t
4 — 34+ p)7 =37
fim 4=V 2. 1im 5"
=16 16x — x2 h—0
. 1 1 . AxP+9 =5
Iim{ —— - — 30. lim
=0\ t/1 + 1 t ¥4 x+ 4
LI
+ I I + h 2 2
}imu—x 32. lim x ) a
h—0 h h—0 h

A 33

A 34,

. (a) Estimate the value of

X
lim —————
0 T T 3x — 1
by graphing the function f(x) = x/(v/T + 3x — 1).
(b) Make a table of values of f(x) for x close to 0 and guess

the value of the limit.
(¢) Use the Limit Laws to prove that your guess is correct.

(a) Use a graph of

. V34 x -~ \/3_
f) =——"——
X

to estimate the value of lim, _,, f(x) to two decimal
places.

(b) Use a table of values of f(x) to estimate the limit to four
decimal places.

(¢) Use the Limit Laws to find the exact value of the limit.

35.

3.

38.
39.

40.

Use the Squeeze Theorem to show that

lim, .o (x* cos 207x) = 0. Ilustrate by graphing the
functions f(x) = —x2 g(x) = x2 cos 207x, and A(x)
the same screen.

=xon

. Use the Squeeze Theorem to show that

=0

. LT
lim +/x?* + x2 sin —
X

x—0

Ilustrate by graphing the functions £, g, and /4 (in the
notation of the Squeeze Theorem) on the same screen.

If4x — 9<f(x) =x*— 4x + 7forx = 0, find ﬁrr; f(x).

=

=

If 2x < g(x) < x* — x% + 2 for all x, evaluate hn} g(x).

X 2
Prove that lim x*cos — = 0,
x>0 X

Prove that 111(1)1+ Vr [l + sin*(2m/x)] = 0.

41-46 Find the limit, if it exists. If the limit does not exist,
explain why.

4.

43.

45,

2+ 12
tim (21 + |x — 3) 2. Xl_i_)ryﬂ——:‘j+6i
fim —2% a. lim 2—1*]
a05- |2x* — x?| T2 24 0%
(11 (11
lim {—— — 46. im | — — —
=0 \x  |x] =0t \x x|

47.

48.

The signum (or sign) function, denoted by sgn, is defined by

-1 ifx<0
sgnx = 0 ifx=0
I if x>0

() Sketch the graph of this function.,
(b) Find each of the following limits or explain why it does
not exist.
(i) _lirgl+ sgn x (i) ‘liI})l“ sgnx
(iii) ]m?) sgn x (iv) l'im0 [sgn x|

Let
ifx <1
ifx=1

L xTH1
f(x) _{(x—Z)z

(a) Find lim,—- f(x) and lim,_;+ f(x).
(b) Does lim ,—, f(x) exist?
(c) Sketch the graph of £,




19. Let g(x) = _’f_tf____é—
T 2
(a) Find
(1) lim g(x) (i) lim g(x)
(b) Does lim.—2 g(x) exist?
(c) Sketch the graph of g.

50. Let
X if x<1
o = 3 fx=1
O =1y fl<x=2
c—3 ifx>2

(a) Evaluate each of the following, if it exists.
() fim g () limgtn (D o)

(iv) lim g(x) ) 15!,,,9()6) (vi) lim g(x)

(b) Sketch the graph of g.
51. (a) If the symbol [ 1 denotes the greatest integer function
defined in Example 10, evaluate
() tim ) G Jim ]
(b) If n is an integef, evaluate
(1) lim [x] (i) lim [x]

(c) For what values of a does lim,—a fx] exist?

(i)t 12

52. Let f(x) = [cos x], —7 =¥ = 1.
(a) Sketch the graph of f.
(b) Evaluate each limit, if it exists.
(i) lim fx) (i) 1;1512), f)

—

(iii) lim f(0) (iv) Jim f(x)

(c) For what values of a does lim,—a f(%) exist?

53. If f(x) =[x} + [—x], show that Hm, ,, f(x) exists but is not

equal to f(2).

54. In the theory of relativity, the Lorentz contraction formula

L= L(]\/l - 1)2/6'2

expresses the length L of an object as a function of its velocity

v with tespect to an observer, where Lo is the length of the

object at rest and ¢ is the speed of light. Find lim, .- L and

interpret the result. Why is a left-hand limit necessary?
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5. If pisa polynomial, show that lim _,, p(x) = pla).

56. If r is a rational function, use Exercise 55 to show that
lim,_,, r{x) = r(a) for every number @ in the domain of 7.

(x) — 8
67 1f tim 2002 — 10, find lim f(x)
x4 X — ] x>
58. If HI’Y(I) ]i(—fl = 5, find the following limits.
x— X
(a) lim f(x) (b) lim M
x>0 x—0 X

59. If

2 .
%2 if xisrational
fl) = R

0 if xisirrational

prove that lim,—o f(x) = 0.
§0. Show by means of an example that lim—a [f(x) + g(x)] may

exist even though neither lim,—a f(x) nor lim,—q g(x) exists.

61. Show by means of an example that limy—a [ £(x) g(x)] may
exist even though neither lim,—q f(x) nor limy—a g(x) exists.

62Evmmrmvﬁ'x_2
. Evaluate lim —=—— -
=2 3 —x — 1
§3. Is there a number @ such that
. Ixl+axt+a+t 3
im —5 5
x—=2 x2+x—2
exists? If so, find the value of a and the value of the limit.

64. The figure shows a fixed circle €, with equation
(x — 1P +y>=1landa shrinking circle C; with radius r and

center the origin. P is the point (0, r), @ is the upper point of
intersection of the two circles, an

that is, as r — 01?7

d R is the point of intersection
of the line PQ and the x-axis. What-happens to R as C, shrinks,



