approach 0. To do this we use our knowledge of the sine function. Because the sine of any number lies between -1 and 1, we can write

$$-1 \le \sin\frac{1}{x} \le 1$$

Any inequality remains true when multiplied by a positive number. We know that $x^2 \ge 0$ for all x and so, multiplying each side of the inequalities in $\boxed{4}$ by x^2 , we get

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

as illustrated by Figure 8. We know that

$$\lim_{x \to 0} x^2 = 0 \quad \text{and} \quad \lim_{x \to 0} (-x^2) = 0$$

Taking $f(x) = -x^2$, $g(x) = x^2 \sin(1/x)$, and $h(x) = x^2$ in the Squeeze Theorem, we

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

FIGURE 8 $y = x^2 \sin(1/x)$

Exercises

1. Given that

$$\lim_{x \to 2} f(x) = 4 \qquad \lim_{x \to 2} g(x) = -2 \qquad \lim_{x \to 2} h(x) = 0$$

find the limits that exist. If the limit does not exist, explain why.

(a)
$$\lim_{x \to 2} [f(x) + 5g(x)]$$

(b)
$$\lim_{x \to 2} [g(x)]^3$$

(c)
$$\lim_{x \to 0} \sqrt{f(x)}$$

(d)
$$\lim_{x \to 2} \frac{3f(x)}{g(x)}$$

(e)
$$\lim_{x \to 2} \frac{g(x)}{h(x)}$$

(f)
$$\lim_{x \to 2} \frac{g(x)h(x)}{f(x)}$$

2. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a)
$$\lim_{x \to 2} [f(x) + g(x)]$$

(b)
$$\lim_{x \to 1} [f(x) + g(x)]$$

(c)
$$\lim_{x \to 0} [f(x)g(x)]$$

(d)
$$\lim_{x \to -1} \frac{f(x)}{g(x)}$$

(e)
$$\lim_{x \to 2} [x^3 f(x)]$$

(f)
$$\lim_{x \to 1} \sqrt{3 + f(x)}$$

3-9 Evaluate the limit and justify each step by indicating the appropriate Limit Law(s).

3.
$$\lim_{x \to -2} (3x^4 + 2x^2 - x + 1)$$

4.
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3)$$

$$5. \lim_{t \to -2} \frac{t^4 - 2}{2t^2 - 3t + 2}$$

6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$$

7.
$$\lim_{x \to 8} (1 + \sqrt[3]{x})(2 - 6x^2 + x^3)$$
 8. $\lim_{t \to 2} \left(\frac{t^2 - 2}{t^3 - 3t + 5} \right)^2$

8.
$$\lim_{t \to 2} \left(\frac{t^2 - 2}{t^3 - 3t + 5} \right)^2$$

9.
$$\lim_{x\to 2} \sqrt{\frac{2x^2+1}{3x-2}}$$

10. (a) What is wrong with the following equation?

$$\frac{x^2 + x - 6}{x - 2} = x + 3$$

(b) In view of part (a), explain why the equation

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} (x + 3)$$

is correct.

11–32 Evaluate the limit, if it exists.

11.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

12.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

13.
$$\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2}$$

14.
$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

15.
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

16.
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3}$$

17.
$$\lim_{h \to 0} \frac{(-5+h)^2 - 25}{h}$$

18.
$$\lim_{h\to 0} \frac{(2+h)^3-8}{h}$$

19.
$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

20.
$$\lim_{t \to 1} \frac{t^4 - 1}{t^3 - 1}$$

21.
$$\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$$

22.
$$\lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2}$$

23.
$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

24.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$

25.
$$\lim_{t\to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$$

26.
$$\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t} \right)$$

27.
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2}$$

28.
$$\lim_{h\to 0} \frac{(3+h)^{-1}-3^{-1}}{h}$$

29.
$$\lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right)$$

30.
$$\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$$

31.
$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

32.
$$\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

33. (a) Estimate the value of

$$\lim_{x \to 0} \frac{x}{\sqrt{1+3x}-1}$$

by graphing the function $f(x) = x/(\sqrt{1+3x} - 1)$.

- (b) Make a table of values of f(x) for x close to 0 and guess the value of the limit.
- (c) Use the Limit Laws to prove that your guess is correct.

34. (a) Use a graph of

$$f(x) = \frac{\sqrt{3+x} - \sqrt{3}}{x}$$

to estimate the value of $\lim_{x\to 0} f(x)$ to two decimal places.

- (b) Use a table of values of f(x) to estimate the limit to four decimal places.
- (c) Use the Limit Laws to find the exact value of the limit.

- **35.** Use the Squeeze Theorem to show that $\lim_{x\to 0} (x^2 \cos 20\pi x) = 0$. Illustrate by graphing the functions $f(x) = -x^2$, $g(x) = x^2 \cos 20\pi x$, and $h(x) = x^2$ on the same screen.
- **36.** Use the Squeeze Theorem to show that

$$\lim_{x \to 0} \sqrt{x^3 + x^2} \sin \frac{\pi}{x} = 0$$

Illustrate by graphing the functions f, g, and h (in the notation of the Squeeze Theorem) on the same screen.

37. If
$$4x - 9 \le f(x) \le x^2 - 4x + 7$$
 for $x \ge 0$, find $\lim_{x \to A} f(x)$.

38. If
$$2x \le g(x) \le x^4 - x^2 + 2$$
 for all x , evaluate $\lim_{x \to 1} g(x)$.

39. Prove that
$$\lim_{x \to 0} x^4 \cos \frac{2}{x} = 0$$
.

40. Prove that
$$\lim_{x\to 0^+} \sqrt{x} \left[1 + \sin^2(2\pi/x)\right] = 0$$
.

41-46 Find the limit, if it exists. If the limit does not exist, explain why.

41.
$$\lim_{x \to 3} (2x + |x - 3|)$$

42.
$$\lim_{x \to -6} \frac{2x + 12}{|x + 6|}$$

43.
$$\lim_{x\to 0.5^-} \frac{2x-1}{|2x^3-x^2|}$$

44.
$$\lim_{x \to -2} \frac{2 - |x|}{2 + x}$$

45.
$$\lim_{x\to 0^{-}} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

46.
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

47. The signum (or sign) function, denoted by sgn, is defined by

$$\operatorname{sgn} x = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

- (a) Sketch the graph of this function.
- (b) Find each of the following limits or explain why it does not exist.
 - (i) $\lim_{x \to 0} \operatorname{sgn} x$
- (ii) lim sgn a
- (iii) $\lim_{x\to 0} \operatorname{sgn} x$
- (iv) $\lim_{n \to \infty} |\operatorname{sgn} x|$

48. Let

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 1\\ (x - 2)^2 & \text{if } x \ge 1 \end{cases}$$

- (a) Find $\lim_{x\to 1^-} f(x)$ and $\lim_{x\to 1^+} f(x)$.
- (b) Does $\lim_{x\to 1} f(x)$ exist?
- (c) Sketch the graph of f.

- **49.** Let $g(x) = \frac{x^2 + x 6}{|x 2|}$.
 - (a) Find
 - (i) $\lim_{x\to 2^+} g(x)$
- (ii) $\lim_{x \to 2^-} g(x)$
 - (b) Does $\lim_{x\to 2} g(x)$ exist?
 - (c) Sketch the graph of g.
- **50**. Let

$$g(x) = \begin{cases} x & \text{if } x < 1\\ 3 & \text{if } x = 1\\ 2 - x^2 & \text{if } 1 < x \le 2\\ x - 3 & \text{if } x > 2 \end{cases}$$

- (a) Evaluate each of the following, if it exists.
 - (i) $\lim_{x \to 1^-} g(x)$ (ii) $\lim_{x \to 1} g(x)$
- (iii) g(1)
- (iv) $\lim_{x \to 2^{-}} g(x)$ (v) $\lim_{x \to 2^{+}} g(x)$
- (vi) $\lim_{x \to 0} g(x)$
- (b) Sketch the graph of g.
- 51. (a) If the symbol [] denotes the greatest integer function defined in Example 10, evaluate
 - (i) $\lim_{x \to \infty} [x]$
- (ii) $\lim_{x \to \infty} [x]$
- (iii) $\lim_{x \to -2.4} [x]$
- (b) If n is an integer, evaluate
 - (i) $\lim_{x \to \infty} [x]$
- (ii) $\lim_{x \to a^+} [x]$
- (c) For what values of a does $\lim_{x\to a} [x]$ exist?
- **52.** Let $f(x) = [\cos x], -\pi \le x \le \pi$.
 - (a) Sketch the graph of f.
 - (b) Evaluate each limit, if it exists.
 - (i) $\lim_{x\to 0} f(x)$
- (ii) $\lim_{x \to (\pi/2)^-} f(x)$
 - (iii) $\lim_{x \to (\pi/2)^+} f(x)$ (iv) $\lim_{x \to \pi/2} f(x)$
 - (c) For what values of a does $\lim_{x\to a} f(x)$ exist?
- **53.** If f(x) = [x] + [-x], show that $\lim_{x\to 2} f(x)$ exists but is not equal to f(2).
- 54. In the theory of relativity, the Lorentz contraction formula

$$L = L_0 \sqrt{1 - v^2/c^2}$$

expresses the length L of an object as a function of its velocity v with respect to an observer, where L_0 is the length of the object at rest and c is the speed of light. Find $\lim_{v\to c^-} L$ and interpret the result. Why is a left-hand limit necessary?

- **55.** If p is a polynomial, show that $\lim_{x\to a} p(x) = p(a)$.
- **56.** If r is a rational function, use Exercise 55 to show that $\lim_{x\to a} r(x) = r(a)$ for every number a in the domain of r.
- **57.** If $\lim_{x \to 1} \frac{f(x) 8}{x 1} = 10$, find $\lim_{x \to 1} f(x)$.
- **58.** If $\lim_{x\to 0} \frac{f(x)}{x^2} = 5$, find the following limits.

71

59. If

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

prove that $\lim_{x\to 0} f(x) = 0$.

- **60.** Show by means of an example that $\lim_{x\to a} [f(x) + g(x)]$ may exist even though neither $\lim_{x\to a} f(x)$ nor $\lim_{x\to a} g(x)$ exists.
- **61.** Show by means of an example that $\lim_{x\to a} [f(x)g(x)]$ may exist even though neither $\lim_{x\to a} f(x)$ nor $\lim_{x\to a} g(x)$ exists.
- **62.** Evaluate $\lim_{x\to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$.
- **63.** Is there a number a such that

$$\lim_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x - 2}$$

exists? If so, find the value of a and the value of the limit.

64. The figure shows a fixed circle C_1 with equation $(x-1)^2 + y^2 = 1$ and a shrinking circle C_2 with radius r and center the origin. P is the point (0, r), Q is the upper point of intersection of the two circles, and R is the point of intersection of the line PQ and the x-axis. What happens to R as C_2 shrinks, that is, as $r \rightarrow 0^+$?

