M E T U Northern Cyprus Campus

Mathematics Proficiency Exam			
Acad.Year: 2010-2011 Semester : Summer	Last Name: Signature: Name : Department:		
Date : 21.6.2011	Student No:		
Time : 10:00 Duration : 120 minutes	30 QUESTIONS ON 10 PAGES TOTAL 100 POINTS		
	SCORE		

Please show your work in all questions.

1.(3 pts) Find the length of the side labelled with x.

x =

2.(each 1.5 pts)

Convert $\frac{13}{3}\pi$ from radians to degrees.	
	1
Convert 435° from degrees to radians.	

3.(each 1 pt) Suppose that a, b, and c denote the sides of a right triangle with angles A, B, and C opposite a, b, and c respectively. If a = 8 and b = 15 are the lengths of the two short sides, then

4. (3 pts) Find an equation of the line through the points (2, 1), (4, 0).

5.(3 pts) Write an equation of the circle with center at (2,0) and passing through the point (0,1).

6.(3 pts) Given two lines with the equations y = 3x + 1 and x + 2y = 1, find the intersection point(s) if there is any.

Name: Id Number:

7.(each 1.5 pts) The difference of Ayşe's and Fatma's money is 30TL. One third of Ayşe's money is 6TL more than Fatma's. How much money do they have?

Ayşe has:	
Fatma has:	

8.(each 1.5 pts) Determine the center and radius of the circle with the equation

$$x^2 - 4x + y^2 - 8y = 0$$

Center:	
Radius:	

9.(3 pts) Let $f(x) = \frac{1}{\sqrt{9-x}}$. Find the domain.

Domain:

10.(each 1.5 pts) Find the domain and the range of f(x) = |3 - 3x| + 1.

Domain:	
Range:	

11.(each 1 pt) For the graph below, state the domain, the range, and the intervals on which the function is increasing, decreasing, or constant.

domain:		
range:		

incr.:		
decr.:		
constant:		

12.(each 1 pt) Use properties of functions to match of the following functions with their graphs.

1.
$$f(x) = (x - 2)^2 + 1$$

2. $f(x) = (x + 2)^2 + 1$
3. $f(x) = 1 - (x - 2)^2$
4. $f(x) = 1 - (x + 2)^2$

Name: Id Number:

13.(each 2 pts) Suppose that $f(x) = \sqrt{4x-5}$ and $g(x) = x^2 - 3$. For each function h given below, find a formula for h(x) and the domain of h.

a. $h(x) = (f \circ g)(x)$	h(x) =	domain:
b. $h(x) = (g \circ f)(x)$	h(x) =	domain:

14.(3 pts) Find a formula for the inverse of the function $f(x) = \frac{1}{1-x} + 1$.

15.(3 pts) The radius r, in centimeters, of a conical cup of height h is being filled with water. The volume is given by $V = \frac{1}{3}\pi r^2 h$. If h = 3r and r = 25 + 2t, find a formula V = V(t), the volume of the cup as a function of time.

V(t):	
-------	--

16.(3 pts) Find the zeros of $f(x) = 8x^2 + 32x + 32$.

x =

17.(3 pts) Solve the inequality $\frac{(x-3)(x+5)}{(x+2)^2} \leq 0$. State the solution set using interval notation.

18.(3 pts) Solve the inequality $3x^2 + 5x - 2 < 0$. State the solution set using interval notation.

19.(3 pts) Find all solutions to the equation $(x+7) - \frac{2}{(x+7)} = 1$

x =			

20.(3 pts) Solve the equation $|2x^2 + 2x + 5| = |6x + 3|$.

21.(each 1 pt) Evaluate the following expressions.

$\sin(\frac{15\pi}{4}) =$	
$\cos(\frac{15\pi}{4}) =$	
$\tan(\frac{15\pi}{4}) =$	
$\cot(\frac{15\pi}{4}) =$	
$\csc(\frac{15\pi}{4}) =$	

 ${\bf 22.}(3~{\rm pts})$ Simplify the expression as much as possible.

$$\frac{\tan(t) + \frac{1}{\tan(t)}}{\sec^2(t)}$$

23.(each 1.5 pts) Find the exact value of the compositions.

1.	$\arctan(2\sin(\pi/6))$	
2.	$\arccos(\sqrt{2}/2)$	

24.(each 1.5 pts) According to the graph below, find the length of BC and the area of the dashed region.

2. $Area =$	

25.(each 1 pt) Use properties of functions to match each of the following functions with their graphs.

1.
$$f(x) = \arcsin(x)$$

2. $f(x) = \sin(10x) - 1$
3. $f(x) = \sin(x) - 1$
4. $f(x) = 2|\cos(x)|$

26.(each 1.5 pts) Calculate the following expressions.

a.	$(e^7)^{\ln 3} =$	
b.	$\log_{10} \sqrt[3]{100} =$	

27.(3 pts) Find the domain of the function $f(x) = \frac{1}{\log_2(x+3)}$

28.(3 pts) Find the solution to the exponential equation $3e^{2t} = 5e^t$

$$t =$$

29.(3 pts) Find the solution to the equation $\frac{\ln(e^{4x}) + \ln(e^{x^2})}{4} = -1$

x =

30. (each 1 pt) Match each function with its graph

1. $y = e^x$	
2. $y = \log_5(x)$	
3. $y = 2^{-2x}$	
4. $y = 5^x$	