SECTION 14.8 LAGRANGE MULTIPLIERS 987

1 Exercises

1. Pictured are a contour map of f and a curve with equation 16. f(x,y,2) =3x —y — 3z
g(x, y) = 8. Estimate the maximum and minimum values x+y—z=0, x*+2z%=1
of f subject to the constraint that g(x, y) = 8. Explain your

17. f(x,y,2) =yz+xy; xy=1, y*+22=1
18 flx,y,z2)=x"+y" +z%4 x—y=1, y’—z'=1

reasoning.

19-21 Find the extreme values of f on the region described by
the inequality.

19, f(x,) =x2+y* +dx—dy, ¥ +y2=9
. fx,y)=2x>+3y? —4x—5, x*+y' =16

_// 22, Consider the problem of maximizing the function
/

f(x,y) = 2x + 3y subject to the constraint v/x + 'y = 3.

(a) Try using Lagrange multipliers to solve the problem.

(b) Does f(25, 0) give a larger value than the one in part (a)?

{c) Solve the problem by graphing the copstraint equation
and several level curves of f.

(d) Explain why the method of Lagrange multipliers fails to
solve the problem.

(e) What is the significance of (9, 4)7

\——o

2. (a) Use a graphing calculator or computer to graph the circle
x* + y® = 1. On the same screen, graph several curves of
the form x* + y = ¢ until you find two that just touch the
circle. What is the significance of the values of ¢ for these
two curves?

(b) Use Lagrange multipliers to find the extreme values of
f(x,y) = x* + y subject to the constraint x> + y2 = 1.

Compare your answers with those in part (a). 23. Consider the problem of minimizing the function f(x, y) = x
on the curve y* + x* — x* = 0 (a piriform).
3-14 Use Lagrange multipliers to find the maximum and mini- () Try using Lagrange multipliers to solve the problem.
_mum values of the function subject to the given constraint. (b) Show that the minimum value is (0, 0) = 0 but the

s 5 Lagrange condition Vf(0, 0) = AVg(0, 0) is not satisfied
S fluy) =x*+y5 ay=1 for any value of A.

A fy)=3x+y x*+y =10 (c) Explain why Lagrange multipliers fail to find the mini-
5 f(ry) =y —x% I yi=1 mum value in this case.

6 f(xy) = e % 4y =16 [CAS] 24. (a) If your computer algebra system plots implicitly defined

curves, use it to estimate the minimum and maximum
Lfx,yz2)=2x+2y+z x>+y2+z2=9 values of f(x, y) = x> + y* + 3xy subject to the con-
B flnyz)=x+y 425 xtytz=12 straint (x — 3)* + gy - 3P = ?by graphical methods.
(b) Solve the problem in part (a) with the aid of Lagrange
% S, y,2) =xyz; x4+ 292+ 322=6 multipliers. Use your CAS to solve the equations numeri-

cally. Compare your answers with those in part (a).
0. flx,y,2) = x%%% x*+y* +22=1

25. The total production P of a certain product depends on the
Ly =24y + 2% x4yttt =1 amount L of labor used and the amount K of capital invest-
4. 5 2 ment. In Sections 14.1 and 14.3 we discussed how the Cobb-
?' foya=attyt+zt ey 42 =1 Douglas model P = bL*K'~* follows from certain economic
3 fuyz,)=x+y+z+i1 2+ Y+ +t=1 assumptions, where b and « are positive constants and
a < 1. If the cost of a unit of labor is m and the cost of a unit
L fna, o x) =x o+ ox of capital is n, and the company can spend only p dollars as
b x2=1 its total budget, then maximizing the production P is subject

to the constraint mL + nK = p. Show that the maximum
production occurs when

518 F ' ints.
ind the extreme values of f subject to both constraints . ap o ‘- - ap
5-f(x,y,z)=x+2y; x+y+z=1, y?+z°=4 m n

Taphing calculator or computer required [cAS] Computer algebra system required 1. Homework Hints available at stewartcalculus.com
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26. Referring to Exercise 25, we now suppose that the pro-
duction is fixed at bL°K'™* = Q, where Q is a constant.
What values of L and K minimize the cost function
C(L,K) =mL + nkK?

27. Use Lagrange multipliers to prove that the rectangle with
maximum area that has a given perimeter p is a square.

28. Use Lagrange multipliers to prove that the triangle with
maximum area that has a given perimeter p is equilateral.
Hint: Use Heron’s formula for the area:

A= s(s — )6 — Y - 2)

where s = p/2 and x, y, z are the lengths of the sides.

29-41 Use Lagrange multipliers to give an alternate solution to
the indicated exercise in Section 14.7.

29. Exercise 39 30. Exercise 40
31. Exercise 41 32. Exercise 42
33. Exercise 43 34. Exercise 44
35. Exercise 45 36. Exercise 46
37. Exercise 47 38. Exercise 48
39. Exercise 49 40. Exercise 50

41. Exercise 53

42. Find the maximum and minimum volumes of a rectangular
box whose surface area is 1500 cm? and whose total edge
length is 200 cm.

43. The plane x + y + 2z = 2 intersects the paraboloid
z=x’ + y”in an ellipse. Find the points on this ellipse
that are nearest to and farthest from the origin.

44. The plane 4x — 3y + 8z = 5 intersects the cone
72 = x% + y%in an ellipse.
(a) Graph the cone, the plane, and the ellipse.
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(b) Use Lagrange multipliers to find the highest ap
points on the ellipse.

S| 45-46 Find the maximum and minimum values of o
the given constraints. Use a computer algebra system g
the system of equations that arises in using Lagrange
(If your CAS finds only one solution, you may need §
tional commands.) k

45. f(x,y,2) = ye* ", 9x* + 4y® + 362 = 36, Xy

8. f(x,y,2)=x-+y+tz x*—y =z x* 4

47. (a) Find the maximum value of

SO, xo, o x) = Yxixe o x,
given that x;, X2, . . ., X, are positive numbers
x; + x2 + -+ + x, = ¢, where ¢ i$ a constan
(b) Deduce from part (a) that if x;, x,, .. ., x, are p

numbers, then

" X1+X2+"'+xn‘
VXX Xy &/

n

This inequality says that the geometric-mean o
numbers is no larger than the arithmetic. mea
numbers. Under what circumstances are thes:
equal?

48. (a) Maximize =}_ x;y; subject to the constraints

and S,y = 1.
(b) Put

to show that

E aib; < /2 qu V2 bj2

for any numbers ai, . .., a, by, ..., b,y Thisin
known as the Cauchy-Schwarz Inequality.

Many rockets, such as the Pegasus XL currently used to launch satellites and the Saz
put men on the moon, are designed to use three stages in their ascent into space. A
initially propels the rocket until its fuel is consumed, at which point the stage is jettis
reduce the mass of the rocket. The smaller second and third stages function similar
place the rocket’s payload into orbit about the earth. (With this désign, at least two
required in order to reach the necessary velocities, and using three stages has prove
compromise between cost and performance.) Our goal here is to determine the indi
of the three stages, which are to be designed in'such a way as to minimize the total m
rocket while enabling it to reach a desired velocity.




