Exercises 125

848

- 1. Determine whether each statement is true or false.
 - (a) Two lines parallel to a third line are parallel.
 - (b) Two lines perpendicular to a third line are parallel.
 - (c) Two planes parallel to a third plane are parallel.
 - (d) Two planes perpendicular to a third plane are parallel.
 - (e) Two lines parallel to a plane are parallel.
 - (f) Two lines perpendicular to a plane are parallel.
 - (g) Two planes parallel to a line are parallel.
 - (h) Two planes perpendicular to a line are parallel.
 - (i) Two planes either intersect or are parallel.
 - (i) Two lines either intersect or are parallel.
 - (k) A plane and a line either intersect or are parallel.
- 2-5 Find a vector equation and parametric equations for the line.
- **2.** The line through the point (6, -5, 2) and parallel to the vector $(1, 3, -\frac{2}{3})$
- 3. The line through the point (2, 2.4, 3.5) and parallel to the vector $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$
- **4.** The line through the point (0, 14, -10) and parallel to the line x = -1 + 2t, y = 6 - 3t, z = 3 + 9t
- 5. The line through the point (1, 0, 6) and perpendicular to the plane x + 3y + z = 5
- 6-12 Find parametric equations and symmetric equations for the
- **6.** The line through the origin and the point (1, 2, 3)
- 7. The line through the points $(0, \frac{1}{2}, 1)$ and (2, 1, -3)
- **8.** The line through the points (1.0, 2.4, 4.6) and (2.6, 1.2, 0.3)
- **9.** The line through the points (-8, 1, 4) and (3, -2, 4)
- **10.** The line through (2, 1, 0) and perpendicular to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$
- **11.** The line through (1, -1, 1) and parallel to the line $x + 2 = \frac{1}{2}y = z - 3$
- **12.** The line of intersection of the planes x + 2y + 3z = 1and x - y + z = 1
- 13. Is the line through (-4, -6, 1) and (-2, 0, -3) parallel to the line through (10, 18, 4) and (5, 3, 14)?
- **14.** Is the line through (-2, 4, 0) and (1, 1, 1) perpendicular to the line through (2, 3, 4) and (3, -1, -8)?
- 15. (a) Find symmetric equations for the line that passes through the point (1, -5, 6) and is parallel to the vector $\langle -1, 2, -3 \rangle$.
 - (b) Find the points in which the required line in part (a) intersects the coordinate planes.

- 16. (a) Find parametric equations for the line through (2, 4, 6) that is perpendicular to the plane x - y + 3z = 7.
 - (b) In what points does this line intersect the coordinate planes?
- 17. Find a vector equation for the line segment from (2, -1, 4)to (4, 6, 1).
- 18. Find parametric equations for the line segment from (10, 3, 1) to (5, 6, -3).
- **19–22** Determine whether the lines L_1 and L_2 are parallel, skew or intersecting. If they intersect, find the point of intersection.
- **19.** L_1 : x = 3 + 2t, y = 4 t, z = 1 + 3t L_2 : x = 1 + 4s, y = 3 - 2s, z = 4 + 5s
- **20.** L_1 : x = 5 12t, y = 3 + 9t, z = 1 3t L_2 : x = 3 + 8s, y = -6s, z = 7 + 2s
- **21.** L_1 : $\frac{x-2}{1} = \frac{y-3}{-2} = \frac{z-1}{-3}$
 - L_2 : $\frac{x-3}{1} = \frac{y+4}{3} = \frac{z-2}{-7}$
- **22.** L_1 : $\frac{x}{1} = \frac{y-1}{-1} = \frac{z-2}{3}$
 - L_2 : $\frac{x-2}{2} = \frac{y-3}{-2} = \frac{z}{7}$
- 23-40 Find an equation of the plane.
- 23. The plane through the point (6, 3, 2) and perpendicular to the vector $\langle -2, 1, 5 \rangle$
- **24.** The plane through the point (4, 0, -3) and with normal vector $\mathbf{j} + 2\mathbf{k}$
- **25.** The plane through the point $\left(-1,\frac{1}{2},3\right)$ and with normal vector i + 4j + k
- **26.** The plane through the point (2, 0, 1) and perpendicular to the line x = 3t, y = 2 - t, z = 3 + 4t
- **27.** The plane through the point (1, -1, -1) and parallel to the plane 5x - y - z = 6
- 28. The plane through the point (2, 4, 6) and parallel to the plane
- **29.** The plane through the point $(1, \frac{1}{2}, \frac{1}{3})$ and parallel to the plane x + y + z = 0
- **30**. The plane that contains the line x = 1 + t, y = 2 t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1
- **31.** The plane through the points (0, 1, 1), (1, 0, 1), and (1, 1, 0)
- 32. The plane through the origin and the points (2, -4, 6)and (5, 1, 3)

849

- 33. The plane through the points (3, -1, 2), (8, 2, 4), and (-1, -2, -3)
- 34. The plane that passes through the point (1, 2, 3) and contains the line x = 3t, y = 1 + t, z = 2 - t
- 35. The plane that passes through the point (6, 0, -2) and contains the line x = 4 - 2t, y = 3 + 5t, z = 7 + 4t
- **36.** The plane that passes through the point (1, -1, 1) and contains the line with symmetric equations x = 2y = 3z
- 37. The plane that passes through the point (-1, 2, 1) and contains the line of intersection of the planes x + y - z = 2 and 2x - y + 3z = 1
- **38.** The plane that passes through the points (0, -2, 5) and (-1, 3, 1) and is perpendicular to the plane 2z = 5x + 4y
- 39. The plane that passes through the point (1, 5, 1) and is perpendicular to the planes 2x + y - 2z = 2 and x + 3z = 4
- 40. The plane that passes through the line of intersection of the planes x - z = 1 and y + 2z = 3 and is perpendicular to the plane x + y - 2z = 1
- 41-44 Use intercepts to help sketch the plane.

41.
$$2x + 5y + z = 10$$

42.
$$3x + y + 2z = 6$$

43.
$$6x - 3y + 4z = 6$$

44.
$$6x + 5y - 3z = 15$$

45-47 Find the point at which the line intersects the given plane.

45.
$$x = 3 - t$$
, $y = 2 + t$, $z = 5t$; $x - y + 2z = 9$

46.
$$x = 1 + 2t$$
, $y = 4t$, $z = 2 - 3t$; $x + 2y - z + 1 = 0$

47.
$$x = y - 1 = 2z$$
; $4x - y + 3z = 8$

- **48.** Where does the line through (1, 0, 1) and (4, -2, 2) intersect the plane x + y + z = 6?
- 49. Find direction numbers for the line of intersection of the planes x + y + z = 1 and x + z = 0.
- **50.** Find the cosine of the angle between the planes x + y + z = 0and x + 2y + 3z = 1.
- 51-56 Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them.

51.
$$x + 4y - 3z = 1$$
, $-3x + 6y + 7z = 0$

52.
$$2z = 4y - x$$
, $3x - 12y + 6z = 1$

53.
$$x + y + z = 1$$
, $x - y + z = 1$

54.
$$2x - 3y + 4z = 5$$
, $x + 6y + 4z = 3$

55.
$$x = 4y - 2z$$
, $8y = 1 + 2x + 4z$

56.
$$x + 2y + 2z = 1$$
, $2x - y + 2z = 1$

57-58 (a) Find parametric equations for the line of intersection of the planes and (b) find the angle between the planes.

57.
$$x + y + z = 1$$
, $x + 2y + 2z = 1$

58.
$$3x - 2y + z = 1$$
, $2x + y - 3z = 3$

59-60 Find symmetric equations for the line of intersection of the planes.

59.
$$5x - 2y - 2z = 1$$
, $4x + y + z = 6$

60.
$$z = 2x - y - 5$$
, $z = 4x + 3y - 5$

- 61. Find an equation for the plane consisting of all points that are equidistant from the points (1, 0, -2) and (3, 4, 0).
- 62. Find an equation for the plane consisting of all points that are equidistant from the points (2, 5, 5) and (-6, 3, 1).
- **63.** Find an equation of the plane with x-intercept a, y-intercept b, and z-intercept c.
- 64. (a) Find the point at which the given lines intersect:

$$\mathbf{r} = \langle 1, 1, 0 \rangle + t \langle 1, -1, 2 \rangle$$

$$\mathbf{r} = \langle 2, 0, 2 \rangle + s \langle -1, 1, 0 \rangle$$

- (b) Find an equation of the plane that contains these lines.
- 65. Find parametric equations for the line through the point (0, 1, 2) that is parallel to the plane x + y + z = 2 and perpendicular to the line x = 1 + t, y = 1 - t, z = 2t.
- 66. Find parametric equations for the line through the point (0, 1, 2) that is perpendicular to the line x = 1 + t, y = 1 - t, z = 2t and intersects this line.
- 67. Which of the following four planes are parallel? Are any of them identical?

$$P_1$$
: $3x + 6y - 3z = 6$

$$P_2$$
: $4x - 12y + 8z = 5$

$$P_3$$
: $9y = 1 + 3x + 6z$ P_4 : $z = x + 2y - 2$

68. Which of the following four lines are parallel? Are any of them identical?

$$L_1$$
: $x = 1 + 6t$, $y = 1 - 3t$, $z = 12t + 5$

$$L_2$$
: $x = 1 + 2t$, $y = t$, $z = 1 + 4t$

$$L_3$$
: $2x - 2 = 4 - 4y = z + 1$

$$L_4$$
: $\mathbf{r} = \langle 3, 1, 5 \rangle + t \langle 4, 2, 8 \rangle$

69-70 Use the formula in Exercise 45 in Section 12.4 to find the distance from the point to the given line.

69.
$$(4, 1, -2)$$
; $x = 1 + t$, $y = 3 - 2t$, $z = 4 - 3t$

70.
$$(0, 1, 3)$$
; $x = 2t$, $y = 6 - 2t$, $z = 3 + t$