M ETU Northern Cyprus Campus

1 ($\mathbf{4}+\mathbf{1 2}$ pts.). Let $f(x)=2^{-x}$ and A the total shaded area below.
(a) Express A as an infinite series.
(b) Does this series converge? If so, what is its value?
2.(16 pts.) Find the shortest distance between the plane $4 x+2 y-z=20$ and the paraboloid $z=x^{2}+y^{2}$, using Lagrange Multipliers Method.
3.(16 pts.) Calculate the double integral

$$
\iint_{R}\left(12 y^{2}-12 x y-24 x^{2}\right) d x d y
$$

over the parallelogram R bounded by the lines $y-2 x=6, y-2 x=-4, y+x=6$, and $y+x=0$. (Hint: Use a change of variables.)
4. $\mathbf{(6 + 1 0}$ pts.) Consider the iterated integral

$$
\int_{0}^{4} \int_{-\sqrt{4-z}}^{\sqrt{4-z}} \int_{-\sqrt{4-z-x^{2}}}^{\sqrt{4-z-x^{2}}} 1 d y d x d z
$$

(a) Change the order of integration to $d z d x d y$.
(b) Change to cylindrical coordinates, and evaluate the triple integral.
$\mathbf{5 .}(\mathbf{6}+\mathbf{6}+\mathbf{6} \mathrm{pts}$.$) For each of the vector fields below, check whether it is conservative or not.$ Find a potential function if it is conservative.
(a) $\mathbf{F}(x, y, z)=\left\langle x^{3}, y^{3}, z^{3}+1\right\rangle$.
(b) $\mathbf{F}(x, y, z)=\left\langle e^{x \cos (y)}, \tan (y) e^{x \cos (y)}(\sec (y)-x), x y\right\rangle$.
(c) $\mathbf{F}(x, y)=\left\langle(1+x y) e^{x y}, e^{y}+x^{2} e^{x y}\right\rangle$.
6. $(6+12$ pts.) (a) Show that

$$
\oint_{C}\left(2 x y+e^{x^{2}}\right) d x+\left((x+1)^{2}+\ln (2+\sin (y))\right) d y=2 \oint_{C}(x-y) d y
$$

where C is the plane curve parametrized as $x=\cos (t)+\frac{1}{10} \cos ^{2}(t), x=\sin (t)+\frac{1}{10} \cos ^{2}(t)$ for $0 \leq t \leq 2 \pi$. (Hint: Use Green's theorem.)
(b) Evaluate the second line integral above directly using the parametrization.
(c) What is the area of the region enclosed by C ?

