Math 120 Calculus for functions of several variables		II. Exam	20.04.2009
Last Name : Name : Student No:	Dept./Sec. : Time : 17:40 Duration : 120 minutes	Signat	ure
7 QUESTIONS ON 4 PAGES		TOTAL 100 POINTS	
1 2 3 4 5 6	7		

M E T U Northern Cyprus Campus

Q1 (15=8+7 pts.) (a) Find the plane through the points (3,0,0), (0,1,2), (0,0,1)

(b) Find the line through the origin (0,0,0) perpendicular to the plane 2x + 3y - z = 16.

Q2 (15 pts.) Sketch the graph of the quadric surface $(x-1)^2 + 5y^2 = 2z$.

Q3 (10 pts.) Find the parametric equations of the tangent line to a space curve $x = t^3$, y = 1 + t, z = 2t

at the point (-1, 0, -2).

 $\mathbf{Q4}$ (15=7+8 pts.) Find the following limits if they exist. Explain your answers.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2+1}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^4}$$

- **Q5 (15=7+8 pts.)** Consider the function $f(x, y) = xy^3 + x^2$.
- (a) Find the tangent plane to the graph of the function f(x, y) at the point (1, 3).

(b) Use the tangent plane appoximation to estimate the value f(1.1, 2.9).

Q6 (15 pts.) Use the Chain Rule to find the partial derivative $\frac{\partial f}{\partial s}$ if $f(x, y, z) = z \ln (x + y^2 + z^3)$ and x = 3t - s, y = t + 2s, z = ts.

Q7 (15 pts.) Let $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ be a vector-valued function such that $\mathbf{r}(t) = \mathbf{r}'''(t)$ for all t. Show that the triple (or box)-product $a(t) = \mathbf{r}(t) \cdot (\mathbf{r}'(t) \times \mathbf{r}''(t))$ is a constant function. (*Hint: consider the derivative a'*(t))