Northern Cyprus Campus

Q1 ($\mathbf{1 5}=\mathbf{8}+\mathbf{7}$ pts.) (a) Find the plane through the points $(3,0,0),(0,1,2),(0,0,1)$
(b) Find the line through the origin $(0,0,0)$ perpendicular to the plane $2 x+3 y-z=16$.

Q2 (15 pts.) Sketch the graph of the quadric surface $(x-1)^{2}+5 y^{2}=2 z$.

Q3 (10 pts.) Find the parametric equations of the tangent line to a space curve

$$
x=t^{3}, \quad y=1+t, \quad z=2 t
$$

at the point $(-1,0,-2)$.

Q4 ($15=7+8$ pts.) Find the following limits if they exist. Explain your answers.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}+1}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+y^{4}}$

Q5 ($\mathbf{1 5}=\mathbf{7}+\mathbf{8}$ pts.) Consider the function $f(x, y)=x y^{3}+x^{2}$.
(a) Find the tangent plane to the graph of the function $f(x, y)$ at the point $(1,3)$.
(b) Use the tangent plane appoximation to estimate the value $f(1.1,2.9)$.

Q6 (15 pts.) Use the Chain Rule to find the partial derivative $\frac{\partial f}{\partial s}$ if $f(x, y, z)=$ $z \ln \left(x+y^{2}+z^{3}\right)$ and $x=3 t-s, y=t+2 s, z=t s$.

Q7 (15 pts.) Let $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ be a vector-valued funtion such that $\mathbf{r}(t)=\mathbf{r}^{\prime \prime \prime}(t)$ for all t. Show that the triple (or box)-product $a(t)=\mathbf{r}(t) \cdot\left(\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right)$ is a constant function. (Hint: consider the derivative $a^{\prime}(t)$)

