Northern Cyprus Campus

Q1 ($16=4+4+4+4 \mathrm{pts}$.) Determine whether the following sequences converge or diverge, and find their limits if they converge. Explain your answers.
(a) $a_{n}=\sqrt{n^{2}+1}-n$
(b) $b_{n}=\frac{\ln (2 n)}{\ln (3 n)}$
(c) $c_{n}=\frac{(-1)^{n} n}{n+1}$
(d) $d_{n}=\frac{\sin (\sqrt{n})}{n}$

Q2 ($15=5+5+5$ pts.) Determine whether the following series converge or diverge. Explain your answers.
(a) $\sum_{n=1}^{\infty} \frac{\sin (2 n)}{n^{2}+2 n}$
(b) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$
(c) $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n}$.

Q3 ($\mathbf{1 4}=\mathbf{7}+\mathbf{7}$ pts.) Computing the N-th partial sum $s_{n}=\sum_{n=1}^{N} a_{n}$ of the following series, find their exact values $\sum_{n=1}^{\infty} a_{n}$ if they converge.
(a) $\sum_{n=1}^{\infty}\left(\sin \left(\frac{n \pi}{2}\right)-\sin \left(\frac{(n+1) \pi}{2}\right)\right)$
(b) $\sum_{n=1}^{\infty}\left(\arctan \left(\frac{n-1}{n}\right)-\arctan \left(\frac{n}{n+1}\right)\right)$

Q4 (15 pts.) Use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{2}}$ converges or diverges. Check all necessary conditions of the test to be applied.

Q5 ($15=3+12$ pts.) Consider the series $\sum_{n=0}^{\infty} \frac{(2 x+3)^{n}}{\sqrt{n^{2}+1}}$.
(a) Write down this series as a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ by indicating the center a and the coefficients c_{n}.
(b) Find the radius of convergence ρ and the interval of convergence I of this power series.

Q6 ($\mathbf{1 5}=8+\mathbf{7}$ pts.) Consider the function $f(x)=\frac{1}{1-x}$ on the interval $-1<x<1$.
(a) Using the power series expansion of the function $f(x)$ about $a=0$ and Term-by-Term differentiation theorem, find the relevant power series expansion of the function $\frac{1}{(1-x)^{2}}$ about the same point $a=0$.
(b) Find the sum $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$ based upon the result of (a).

Q7 ($\mathbf{1 0}=\mathbf{2}+\mathbf{3 + 5}$ pts.) Consider the function $f(x)=x e^{x}$.
(a) By induction on n, prove that $f^{(n)}(x)=(x+n) e^{x}$.
(b) Find the Maclaurin series of $f(x)$ using the result of (a) .
(c) Use Taylor's inequality for the remainder $R_{n}(x)$ of the Maclaurin series of $f(x)$, to show that the Maclaurin series converges to $f(x)$ for all x.

