$$s(t) = -4.9t^2 + 15t + D$$

Using the fact that s(0) = 140, we have 140 = 0 + D and so

$$s(t) = -4.9t^2 + 15t + 140$$

The expression for s(t) is valid until the ball hits the ground. This happens when s(t) = 0, that is, when

$$-4.9t^2 - 15t - 140 = 0$$

Using the quadratic formula to solve this equation, we get

$$t = \frac{15 \pm \sqrt{2969}}{9.8}$$

We reject the solution with the minus sign since it gives a negative value for t. Therefore the ball hits the ground after

 $\frac{15 + \sqrt{2969}}{9.8} \approx 7.1 \text{ s}$

273

Figure 4 shows the position function of the ball in Example 7. The graph corroborates the conclusions we reached: The ball reaches its maximum height after 1.5 s and hits the ground after 7.1 s.

FIGURE 4

3.9 **Exercises**

1-18 Find the most general antiderivative of the function. (Check your answer by differentiation.)

1.
$$f(x) = x - 3$$

2.
$$f(x) = \frac{1}{2}x^2 - 2x + 6$$

3.
$$f(x) = \frac{1}{2} + \frac{3}{4}x^2 - \frac{4}{5}x^3$$

4.
$$f(x) = 8x^9 - 3x^6 + 12x^3$$

5.
$$f(x) = (x + 1)(2x - 1)$$

6.
$$f(x) = x(2-x)^2$$

7.
$$f(x) = 7x^{2/5} + 8x^{-4/5}$$

8.
$$f(x) = x^{3.4} - 2x^{\sqrt{2}-1}$$

9.
$$f(x) = \sqrt{2}$$

10.
$$f(x) = \pi^2$$

11.
$$f(x) = \frac{10}{x^9}$$

12.
$$g(x) = \frac{5 - 4x^3 + 2x^6}{x^6}$$

13.
$$g(t) = \frac{1 + t + t^2}{\sqrt{t}}$$

14.
$$f(t) = 3 \cos t - 4 \sin t$$

15.
$$h(\theta) = 2 \sin \theta - \sec^2 \theta$$

16.
$$f(\theta) = 6\theta^2 - 7 \sec^2 \theta$$

17.
$$f(t) = 2 \sec t \tan t + \frac{1}{2}t^{-1/2}$$
 18. $f(x) = 2\sqrt{x} + 6 \cos x$

18.
$$f(x) = 2\sqrt{x} + 6\cos x$$

19-20 Find the antiderivative F of f that satisfies the given condition. Check your answer by comparing the graphs of f and F.

19.
$$f(x) = 5x^4 - 2x^5$$
, $F(0) = 4$

20.
$$f(x) = x + 2 \sin x$$
, $F(0) = -6$

21–40 Find f.

21.
$$f''(x) = 20x^3 - 12x^2 + 6x$$

22.
$$f''(x) = x^6 - 4x^4 + x + 1$$

23.
$$f''(x) = \frac{2}{3}x^{2/3}$$

24.
$$f''(x) = 6x + \sin x$$

25.
$$f'''(t) = \cos t$$

26.
$$f'''(t) = t - \sqrt{t}$$

27.
$$f'(x) = 1 + 3\sqrt{x}$$
, $f(4) = 25$

28.
$$f'(x) = 5x^4 - 3x^2 + 4$$
, $f(-1) = 2$

29.
$$f'(x) = \sqrt{x} (6 + 5x)$$
, $f(1) = 10$

30.
$$f'(t) = t + 1/t^3$$
, $t > 0$, $f(1) = 6$

31.
$$f'(t) = 2 \cos t + \sec^2 t$$
, $-\pi/2 < t < \pi/2$, $f(\pi/3) = 4$

32.
$$f'(x) = x^{-1/3}$$
, $f(1) = 1$, $f(-1) = -1$

33.
$$f''(x) = -2 + 12x - 12x^2$$
, $f(0) = 4$, $f'(0) = 12$

34.
$$f''(x) = 8x^3 + 5$$
, $f(1) = 0$, $f'(1) = 8$

35.
$$f''(\theta) = \sin \theta + \cos \theta$$
, $f(0) = 3$, $f'(0) = 4$

36.
$$f''(t) = 3/\sqrt{t}$$
, $f(4) = 20$, $f'(4) = 7$

37.
$$f''(x) = 4 + 6x + 24x^2$$
, $f(0) = 3$, $f(1) = 10$

38.
$$f''(x) = 20x^3 + 12x^2 + 4$$
, $f(0) = 8$, $f(1) = 5$

39.
$$f''(x) = 2 + \cos x$$
, $f(0) = -1$, $f(\pi/2) = 0$

40.
$$f'''(x) = \cos x$$
, $f(0) = 1$, $f'(0) = 2$, $f''(0) = 3$

- **41**. Given that the graph of f passes through the point (1, 6)and that the slope of its tangent line at (x, f(x)) is 2x + 1, find f(2).
- **42.** Find a function f such that $f'(x) = x^3$ and the line x + y = 0is tangent to the graph of f.

43–44 The graph of a function f is shown. Which graph is an antiderivative of f and why?

45. The graph of a function is shown in the figure. Make a rough sketch of an antiderivative F, given that F(0) = 1.

46. The graph of the velocity function of a particle is shown in the figure. Sketch the graph of a position function.

47. The graph of f' is shown in the figure. Sketch the graph of f if f is continuous and f(0) = -1.

- **48.** (a) Use a graphing device to graph $f(x) = 2x 3\sqrt{x}$.
 - (b) Starting with the graph in part (a), sketch a rough graph of the antiderivative F that satisfies F(0) = 1.
 - (c) Use the rules of this section to find an expression for F(x).
 - (d) Graph F using the expression in part (c). Compare with your sketch in part (b).
- 49-50 Draw a graph of f and use it to make a rough sketch of the antiderivative that passes through the origin.

49.
$$f(x) = \frac{\sin x}{1 + x^2}, \quad -2\pi \le x \le 2\pi$$

50.
$$f(x) = \sqrt{x^4 - 2x^2 + 2} - 2$$
, $-3 \le x \le 3$

51–56 A particle is moving with the given data. Find the position of the particle.

51.
$$v(t) = \sin t - \cos t$$
, $s(0) = 0$

52.
$$v(t) = 1.5\sqrt{t}$$
, $s(4) = 10$

53.
$$a(t) = 2t + 1$$
, $s(0) = 3$, $v(0) = -2$

54.
$$a(t) = 3\cos t - 2\sin t$$
, $s(0) = 0$, $v(0) = 4$

55.
$$a(t) = 10 \sin t + 3 \cos t$$
, $s(0) = 0$, $s(2\pi) = 12$

56.
$$a(t) = t^2 - 4t + 6$$
, $s(0) = 0$, $s(1) = 20$

- **57.** A stone is dropped from the upper observation deck (the Space Deck) of the CN Tower, 450 m above the ground.
 - (a) Find the distance of the stone above ground level at time *t*.
 - (b) How long does it take the stone to reach the ground?
 - (c) With what velocity does it strike the ground?
 - (d) If the stone is thrown downward with a speed of 5 m/s, how long does it take to reach the ground?
- **58.** Show that for motion in a straight line with constant acceleration a, initial velocity v_0 , and initial displacement s_0 , the displacement after time t is

$$s = \frac{1}{2}at^2 + v_0t + s_0$$

59. An object is projected upward with initial velocity v_0 meters per second from a point s_0 meters above the ground. Show that

$$[v(t)]^2 = v_0^2 - 19.6[s(t) - s_0]$$

- **60.** Two balls are thrown upward from the edge of the cliff in Example 7. The first is thrown with a speed of 15 m/s and the other is thrown a second later with a speed of 8 m/s. Do the balls ever pass each other?
- **61.** A stone was dropped off a cliff and hit the ground with a speed of 40 m/s. What is the height of the cliff?
- **62.** If a diver of mass m stands at the end of a diving board with length L and linear density ρ , then the board takes on the shape of a curve y = f(x), where

$$EIy'' = mg(L - x) + \frac{1}{2}\rho g(L - x)^2$$

- E and I are positive constants that depend on the material of the board and g (< 0) is the acceleration due to gravity.
- (a) Find an expression for the shape of the curve.
- (b) Use f(L) to estimate the distance below the horizontal at the end of the board.

- **63.** A company estimates that the marginal cost (in dollars per item) of producing x items is 1.92 0.002x. If the cost of producing one item is \$562, find the cost of producing 100 items.
- **64.** The linear density of a rod of length 1 m is given by $\rho(x) = 1/\sqrt{x}$, in grams per centimeter, where x is measured in centimeters from one end of the rod. Find the mass of the rod.
- 65. Since raindrops grow as they fall, their surface area increases and therefore the resistance to their falling increases. A raindrop has an initial downward velocity of 10 m/s and its downward acceleration is

$$a = \begin{cases} 9 - 0.9t & \text{if } 0 \le t \le 10\\ 0 & \text{if } t > 10 \end{cases}$$

If the raindrop is initially 500 m above the ground, how long does it take to fall?

- **66.** A car is traveling at 80 km/h when the brakes are fully applied, producing a constant deceleration of 7 m/s². What is the distance traveled before the car comes to a stop?
- 67. What constant acceleration is required to increase the speed of a car from 50 km/h to 80 km/h in 5 s?
- 68. A car braked with a constant deceleration of 5 m/s², producing skid marks measuring 60 m before coming to a stop. How fast was the car traveling when the brakes were first applied?

- **69.** A car is traveling at 100 km/h when the driver sees an accident 80 m ahead and slams on the brakes. What constant deceleration is required to stop the car in time to avoid a pileup?
- **70.** A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds is a(t) = 18t, at which time the fuel is exhausted and it becomes a freely "falling" body. Fourteen seconds later, the rocket's parachute opens, and the (downward) velocity slows linearly to -5.5 m/s in five seconds. The rocket then "floats" to the ground at that rate.
 - (a) Determine the position function s and the velocity function v (for all times t). Sketch the graphs of s and v.
 - (b) At what time does the rocket reach its maximum height, and what is that height?
 - (c) At what time does the rocket land?
- 71. A high-speed bullet train accelerates and decelerates at the rate of 1.2 m/s². Its maximum cruising speed is 145 km/h.
 - (a) What is the maximum distance the train can travel if it accelerates from rest until it reaches its cruising speed and then runs at that speed for 15 minutes?
 - (b) Suppose that the train starts from rest and must come to a complete stop in 15 minutes. What is the maximum distance it can travel under these conditions?
 - (c) Find the minimum time that the train takes to travel between two consecutive stations that are 72 km apart.
 - (d) The trip from one station to the next takes 37.5 minutes. How far apart are the stations?

3 Review

Concept Check

- 1. Explain the difference between an absolute maximum and a local maximum. Illustrate with a sketch.
- 2. (a) What does the Extreme Value Theorem say?
 - (b) Explain how the Closed Interval Method works.
- 3. (a) State Fermat's Theorem.
 - (b) Define a critical number of f.
- 4. (a) State Rolle's Theorem.
 - (b) State the Mean Value Theorem and give a geometric interpretation.
- 5. (a) State the Increasing/Decreasing Test.
 - (b) What does it mean to say that f is concave upward on an interval I?
 - (c) State the Concavity Test.
 - (d) What are inflection points? How do you find them?
- 6. (a) State the First Derivative Test.
 - (b) State the Second Derivative Test.
 - (c) What are the relative advantages and disadvantages of these tests?

- 7. Explain the meaning of each of the following statements.
 - (a) $\lim_{x \to \infty} f(x) = L$ (b) $\lim_{x \to -\infty} f(x) = L$ (c) $\lim_{x \to \infty} f(x) = \infty$
 - (d) The curve y = f(x) has the horizontal asymptote y = L.
- **8.** If you have a graphing calculator or computer, why do you need calculus to graph a function?
- **9.** (a) Given an initial approximation x_1 to a root of the equation f(x) = 0, explain geometrically, with a diagram, how the second approximation x_2 in Newton's method is obtained.
 - (b) Write an expression for x_2 in terms of x_1 , $f(x_1)$, and $f'(x_1)$.
 - (c) Write an expression for x_{n+1} in terms of x_n , $f(x_n)$, and $f'(x_n)$.
 - (d) Under what circumstances is Newton's method likely to fail or to work very slowly?
- **10.** (a) What is an antiderivative of a function f?
 - (b) Suppose F_1 and F_2 are both antiderivatives of f on an interval I. How are F_1 and F_2 related?