

FIGURE 17 $\lim f(x) = \infty$

Finally we note that an infinite limit at infinity can be defined as follows. The geometric illustration is given in Figure 17.

7 Definition Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = \infty$$

means that for every positive number M there is a corresponding positive number N such that

if
$$x > N$$
 then $f(x) > M$

Similar definitions apply when the symbol ∞ is replaced by $-\infty$. (See Exercise 72.)

Exercises

1. Explain in your own words the meaning of each of the following.

(a)
$$\lim_{x \to 0} f(x) = 5$$

(b)
$$\lim_{x \to -\infty} f(x) = 3$$

- **2.** (a) Can the graph of y = f(x) intersect a vertical asymptote? Can it intersect a horizontal asymptote? Illustrate by sketching graphs.
 - (b) How many horizontal asymptotes can the graph of y = f(x)have? Sketch graphs to illustrate the possibilities.
- **3.** For the function f whose graph is given, state the following.

(a)
$$\lim_{x \to 2} f(x)$$

(b)
$$\lim_{x \to -1^-} f(x)$$

(c)
$$\lim_{x \to -1^+} f(x)$$

(d)
$$\lim_{x \to \infty} f(x)$$

(e)
$$\lim_{x \to -\infty} f(x)$$

4. For the function g whose graph is given, state the following.

(a)
$$\lim_{x\to\infty} g(x)$$

(b)
$$\lim_{x \to -\infty} g(x)$$

(c)
$$\lim_{x \to 3} g(x)$$

(d)
$$\lim_{x\to 0} g(x)$$

(e)
$$\lim_{x \to -2^+} g(x)$$

(f) The equations of the asymptotes

5. Guess the value of the limit

$$\lim_{x\to\infty}\frac{x^2}{2^x}$$

by evaluating the function $f(x) = x^2/2^x$ for x = 0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 20, 50, and 100. Then use a graph of f to support your guess.

6. (a) Use a graph of

$$f(x) = \left(1 - \frac{2}{x}\right)^x$$

to estimate the value of $\lim_{x\to\infty} f(x)$ correct to two decimal places.

- (b) Use a table of values of f(x) to estimate the limit to four decimal places.
- 7-8 Evaluate the limit and justify each step by indicating the appropriate properties of limits.

7.
$$\lim_{x \to \infty} \frac{3x^2 - x + 4}{2x^2 + 5x - 8}$$

8.
$$\lim_{x \to \infty} \sqrt{\frac{12x^3 - 5x + 2}{1 + 4x^2 + 3x^3}}$$

9-30 Find the limit or show that it does not exist.

9.
$$\lim_{x \to \infty} \frac{1}{2x + 3}$$

10.
$$\lim_{x\to\infty} \frac{3x+5}{x-4}$$

11.
$$\lim_{x \to -\infty} \frac{1 - x - x^2}{2x^2 - 7}$$

12.
$$\lim_{y \to \infty} \frac{2 - 3y^2}{5y^2 + 4y}$$

13.
$$\lim_{t \to \infty} \frac{\sqrt{t} + t^2}{2t - t^2}$$

14.
$$\lim_{t \to \infty} \frac{t - t\sqrt{t}}{2t^{3/2} + 3t - 5}$$

15.
$$\lim_{x \to \infty} \frac{(2x^2 + 1)^2}{(x - 1)^2(x^2 + x)}$$

16.
$$\lim_{x \to \infty} \frac{x^2}{\sqrt{x^4 + 1}}$$

17.
$$\lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

18.
$$\lim_{x \to -\infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

19.
$$\lim_{x \to \infty} (\sqrt{9x^2 + x} - 3x)$$

20.
$$\lim_{x \to -\infty} (x + \sqrt{x^2 + 2x})$$

21.
$$\lim_{x \to \infty} (\sqrt{x^2 + ax} - \sqrt{x^2 + bx})$$
 22. $\lim_{x \to \infty} \cos x$

23.
$$\lim_{x \to \infty} \frac{x^4 - 3x^2 + x}{x^3 - x + 2}$$

24.
$$\lim_{x \to \infty} \sqrt{x^2 + 1}$$

25.
$$\lim_{x \to -\infty} (x^4 + x^5)$$

26.
$$\lim_{x \to -\infty} \frac{1 + x^6}{x^4 + 1}$$

27.
$$\lim_{x \to \infty} (x - \sqrt{x})$$

28.
$$\lim_{x \to \infty} (x^2 - x^4)$$

$$29. \lim_{x \to \infty} x \sin \frac{1}{x}$$

$$30. \lim_{x \to \infty} \sqrt{x} \sin \frac{1}{x}$$

31. (a) Estimate the value of

$$\lim \left(\sqrt{x^2 + x + 1} + x\right)$$

by graphing the function $f(x) = \sqrt{x^2 + x + 1} + x$.

- (b) Use a table of values of f(x) to guess the value of the
- (c) Prove that your guess is correct.

22. (a) Use a graph of

$$f(x) = \sqrt{3x^2 + 8x + 6} - \sqrt{3x^2 + 3x + 1}$$

to estimate the value of $\lim_{x\to\infty} f(x)$ to one decimal place.

- (b) Use a table of values of f(x) to estimate the limit to four decimal places.
- (c) Find the exact value of the limit.
- 33-38 Find the horizontal and vertical asymptotes of each curve. If you have a graphing device, check your work by graphing the curve and estimating the asymptotes.

33.
$$y = \frac{2x+1}{x-2}$$

34.
$$y = \frac{x^2 + 1}{2x^2 - 3x - 2}$$

35.
$$y = \frac{2x^2 + x - 1}{x^2 + x - 2}$$

$$36. y = \frac{1 + x^4}{x^2 - x^4}$$

37.
$$y = \frac{x^3 - x}{x^2 - 6x + 5}$$

38.
$$F(x) = \frac{x-9}{\sqrt{4x^2+3x+2}}$$

39. Estimate the horizontal asymptote of the function

$$f(x) = \frac{3x^3 + 500x^2}{x^3 + 500x^2 + 100x + 2000}$$

by graphing f for $-10 \le x \le 10$. Then calculate the equation of the asymptote by evaluating the limit. How do you explain the discrepancy?

40. (a) Graph the function

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

How many horizontal and vertical asymptotes do you observe? Use the graph to estimate the values of the limits

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} \quad \text{and} \quad \lim_{x \to \sqrt{x}} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

- (b) By calculating values of f(x), give numerical estimates of the limits in part (a).
- (c) Calculate the exact values of the limits in part (a). Did you get the same value or different values for these two limits? [In view of your answer to part (a), you might have to check your calculation for the second limit.]
- **41.** Find a formula for a function f that satisfies the following conditions:

$$\lim_{x \to 0} f(x) = 0$$
, $\lim_{x \to 0} f(x) = -\infty$, $f(2) = 0$,

$$\lim_{x \to 2^{-}} f(x) = \infty, \quad \lim_{x \to 2^{+}} f(x) = -\infty$$

- 42. Find a formula for a function that has vertical asymptotes x = 1 and x = 3 and horizontal asymptote y = 1.
- **43.** A function f is a ratio of quadratic functions and has a vertical asymptote x = 4 and just one x-intercept, x = 1. It is known that f has a removable discontinuity at x = -1 and $\lim_{x\to -1} f(x) = 2$. Evaluate
- 44-47 Find the horizontal asymptotes of the curve and use them, together with concavity and intervals of increase and decrease, to

44.
$$y = \frac{1 + 2x^2}{1 + x^2}$$

sketch the curve.

(a) f(0)

45.
$$y = \frac{1-x}{1+x}$$

(b) $\lim f(x)$

46.
$$y = \frac{x}{\sqrt{x^2 + 1}}$$

47.
$$y = \frac{x}{x^2 + 1}$$

48–52 Find the limits as $x \to \infty$ and as $x \to -\infty$. Use this information, together with intercepts, to give a rough sketch of the graph as in Example 11.

48.
$$y = 2x^3 - x^4$$

49.
$$y = x^4 - x^6$$

50.
$$y = x^3(x+2)^2(x-1)$$

51.
$$y = (3 - x)(1 + x)^2(1 - x)^4$$

52.
$$y = x^2(x^2 - 1)^2(x + 2)$$

53–56 Sketch the graph of a function that satisfies all of the given conditions.

53.
$$f'(2) = 0$$
, $f(2) = -1$, $f(0) = 0$, $f'(x) < 0$ if $0 < x < 2$, $f''(x) > 0$ if $x > 2$, $f''(x) < 0$ if $0 \le x < 1$ or if $x > 4$, $f''(x) > 0$ if $1 < x < 4$, $\lim_{x \to \infty} f(x) = 1$, $f(-x) = f(x)$ for all x

54.
$$f'(2) = 0$$
, $f'(0) = 1$, $f'(x) > 0$ if $0 < x < 2$, $f'(x) < 0$ if $x > 2$, $f''(x) < 0$ if $0 < x < 4$, $f''(x) > 0$ if $x > 4$, $\lim_{x \to \infty} f(x) = 0$, $f(-x) = -f(x)$ for all x

55.
$$f(1) = f'(1) = 0$$
, $\lim_{x \to 2^+} f(x) = \infty$, $\lim_{x \to 2^-} f(x) = -\infty$, $\lim_{x \to 0} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = \infty$, $\lim_{x \to \infty} f(x) = 0$, $f''(x) > 0$ for $x > 2$, $f''(x) < 0$ for $x < 0$ and for $0 < x < 2$

56.
$$g(0) = 0$$
, $g''(x) < 0$ for $x \neq 0$, $\lim_{x \to -\infty} g(x) = \infty$, $\lim_{x \to 0^+} g(x) = -\infty$, $\lim_{x \to 0^+} g'(x) = \infty$

57. (a) Use the Squeeze Theorem to evaluate
$$\lim_{x\to\infty} \frac{\sin x}{x}$$
.

(b) Graph
$$f(x) = (\sin x)/x$$
. How many times does the graph cross the asymptote?

58. By the *end behavior* of a function we mean the behavior of its values as
$$x \to \infty$$
 and as $x \to -\infty$.

(a) Describe and compare the end behavior of the functions

$$P(x) = 3x^5 - 5x^3 + 2x$$
 $Q(x) = 3x^5$

by graphing both functions in the viewing rectangles [-2, 2] by [-2, 2] and [-10, 10] by [-10,000, 10,000].

- (b) Two functions are said to have the *same end behavior* if their ratio approaches 1 as $x \to \infty$. Show that P and Q have the same end behavior.
- **59.** Let P and Q be polynomials. Find

$$\lim_{x \to \infty} \frac{P(x)}{O(x)}$$

if the degree of P is (a) less than the degree of Q and (b) greater than the degree of Q.

60. Make a rough sketch of the curve $y = x^n$ (*n* an integer) for the following five cases:

(i)
$$n = 0$$

(ii)
$$n > 0$$
, n odd

(iii)
$$n > 0$$
, n even

(iv)
$$n < 0$$
, n odd

(v)
$$n < 0$$
, n even

Then use these sketches to find the following limits.

(a)
$$\lim_{n\to 0^+} x^n$$

(b)
$$\lim_{n \to \infty} x^n$$

(c)
$$\lim_{n \to \infty} x^n$$

(d)
$$\lim x^n$$

61. Find
$$\lim_{x\to\infty} f(x)$$
 if

$$\frac{4x-1}{x} < f(x) < \frac{4x^2 + 3x}{x^2}$$

for all x > 5.

62. (a) A tank contains 5000 L of pure water. Brine that contains 30 g of salt per liter of water is pumped into the tank at a rate of 25 L/min. Show that the concentration of salt after t minutes (in grams per liter) is

$$C(t) = \frac{30t}{200 + t}$$

(b) What happens to the concentration as $t \to \infty$?

$$\square$$
 63. Use a graph to find a number N such that

if
$$x > N$$
 then $\left| \frac{3x^2 + 1}{2x^2 + x + 1} - 1.5 \right| < 0.05$

$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 1}}{x + 1} = 2$$

illustrate Definition 5 by finding values of N that correspond to $\varepsilon = 0.5$ and $\varepsilon = 0.1$.

65. For the limit

$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 1}}{x + 1} = -2$$

illustrate Definition 6 by finding values of N that correspond to $\varepsilon = 0.5$ and $\varepsilon = 0.1$.

66. For the limit

$$\lim_{x \to \infty} \frac{2x+1}{\sqrt{x+1}} = \infty$$

illustrate Definition 7 by finding a value of N that corresponds to M = 100.

- 67. (a) How large do we have to take x so that $1/x^2 < 0.0001$?
 - (b) Taking r = 2 in Theorem 4, we have the statement

$$\lim_{x \to \infty} \frac{1}{r^2} = 0$$

Prove this directly using Definition 5.