If we let $\theta = 7x$, then $\theta \rightarrow 0$ as $x \rightarrow 0$, so by Equation 2 we have

$$\lim_{x \to 0} \frac{\sin 7x}{4x} = \frac{7}{4} \lim_{x \to 0} \left(\frac{\sin 7x}{7x} \right)$$
$$= \frac{7}{4} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \frac{7}{4} \cdot 1 = \frac{7}{4}$$

V EXAMPLE 6 Calculate $\lim_{x \to 0} x \cot x$.

SOLUTION Here we divide numerator and denominator by x:

$$\lim_{x \to 0} x \cot x = \lim_{x \to 0} \frac{x \cos x}{\sin x}$$

$$= \lim_{x \to 0} \frac{\cos x}{\frac{\sin x}{x}} = \frac{\lim_{x \to 0} \cos x}{\lim_{x \to 0} \frac{\sin x}{x}}$$

$$= \frac{\cos 0}{1} \qquad \text{(by the continuity of cosine and Equation 2)}$$

$$= 1$$

Exercises 24

1-16 Differentiate.

1.
$$f(x) = 3x^2 - 2\cos x$$

$$2. \ f(x) = \sqrt{x} \sin x$$

3.
$$f(x) = \sin x + \frac{1}{2} \cot x$$

$$4. \ y = 2 \sec x - \csc x$$

$$\mathbf{5.} \ g(t) = t^3 \cos t$$

6.
$$q(t) = 4 \sec t + \tan t$$

7.
$$y = c \cos t + t^2 \sin t$$

8.
$$y = u(a \cos u + b \cot u)$$

$$9. \ y = \frac{x}{2 - \tan x}$$

10.
$$y = \sin \theta \cos \theta$$

11.
$$f(\theta) = \frac{\sec \theta}{1 + \sec \theta}$$

$$12. \ y = \frac{\cos x}{1 - \sin x}$$

13.
$$y = \frac{t \sin t}{1 + t}$$

$$14. \ y = \frac{1 - \sec x}{\tan x}$$

15.
$$h(\theta) = \theta \csc \theta - \cot \theta$$

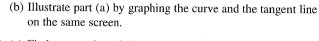
16.
$$y = x^2 \sin x \tan x$$

17. Prove that
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$
.

18. Prove that
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
.

19. Prove that
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
.

20. Prove, using the definition of derivative, that if
$$f(x) = \cos x$$
, then $f'(x) = -\sin x$.

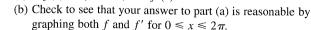

21.
$$y = \sec x$$
, $(\pi/3, 2)$

22.
$$y = (1 + x)\cos x$$
. (0.1)

23
$$y = \cos x - \sin x$$
 ($\pi - 1$

23.
$$y = \cos x - \sin x$$
, $(\pi, -1)$ **24.** $y = x + \tan x$, (π, π)

25. (a) Find an equation of the tangent line to the curve
$$y = 2x \sin x$$
 at the point $(\pi/2, \pi)$.



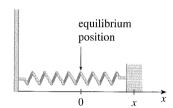
26. (a) Find an equation of the tangent line to the curve
$$y = 3x + 6 \cos x$$
 at the point $(\pi/3, \pi + 3)$.

27. (a) If
$$f(x) = \sec x - x$$
, find $f'(x)$.

(b) Check to see that your answer to part (a) is reasonable by graphing both
$$f$$
 and f' for $|x| < \pi/2$.

28. (a) If
$$f(x) = \sqrt{x} \sin x$$
, find $f'(x)$.

M


M

A

- 29. If $H(\theta) = \theta \sin \theta$, find $H'(\theta)$ and $H''(\theta)$.
- **30.** If $f(t) = \csc t$, find $f''(\pi/6)$.
- 31. (a) Use the Quotient Rule to differentiate the function

$$f(x) = \frac{\tan x - 1}{\sec x}$$

- (b) Simplify the expression for f(x) by writing it in terms of sin x and cos x, and then find f'(x).
- (c) Show that your answers to parts (a) and (b) are equivalent.
- **32.** Suppose $f(\pi/3) = 4$ and $f'(\pi/3) = -2$, and let $g(x) = f(x) \sin x$ and $h(x) = (\cos x)/f(x)$. Find (a) $g'(\pi/3)$ (b) $h'(\pi/3)$
- **33.** For what values of x does the graph of $f(x) = x + 2 \sin x$ have a horizontal tangent?
- **34.** Find the points on the curve $y = (\cos x)/(2 + \sin x)$ at which the tangent is horizontal.
- **35.** A mass on a spring vibrates horizontally on a smooth level surface (see the figure). Its equation of motion is $x(t) = 8 \sin t$, where t is in seconds and x in centimeters.
 - (a) Find the velocity and acceleration at time t.
 - (b) Find the position, velocity, and acceleration of the mass at time $t = 2\pi/3$. In what direction is it moving at that

- 36. An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is $s = 2 \cos t + 3 \sin t$, $t \ge 0$, where s is measured in centimeters and t in seconds. (Take the positive direction to be downward.)
 - (a) Find the velocity and acceleration at time t.
 - (b) Graph the velocity and acceleration functions.
 - (c) When does the mass pass through the equilibrium position for the first time?
 - (d) How far from its equilibrium position does the mass travel?
 - (e) When is the speed the greatest?
 - 37. A ladder 6 m long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta = \pi/3$?

38. An object with mass m is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle θ with the plane, then the magnitude of the force is

$$F = \frac{\mu mg}{\mu \sin \theta + \cos \theta}$$

where μ is a constant called the *coefficient of friction*.

- (a) Find the rate of change of F with respect to θ .
- (b) When is this rate of change equal to 0?
- (c) If m = 20 kg, $g = 9.8 \text{ m/s}^2$, and $\mu = 0.6$, draw the graph of F as a function of θ and use it to locate the value of θ for which $dF/d\theta = 0$. Is the value consistent with your answer to part (b)?
- 39-48 Find the limit.

39.
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$

M

40.
$$\lim_{x \to 0} \frac{\sin 4x}{\sin 6x}$$

41.
$$\lim_{t\to 0} \frac{\tan 6t}{\sin 2t}$$

42.
$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\sin \theta}$$

43.
$$\lim_{x\to 0} \frac{\sin 3x}{5x^3-4x}$$

44.
$$\lim_{x \to 0} \frac{\sin 3x \sin 5x}{x^2}$$

45.
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta}$$

46.
$$\lim_{x\to 0} \frac{\sin(x^2)}{x}$$

47.
$$\lim_{x \to \pi/4} \frac{1 - \tan x}{\sin x - \cos x}$$

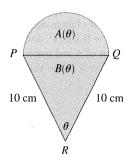
48.
$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x - 2}$$

49-50 Find the given derivative by finding the first few derivatives and observing the pattern that occurs.

49.
$$\frac{d^{99}}{dx^{99}}(\sin x)$$

50.
$$\frac{d^{35}}{dx^{35}}(x \sin x)$$

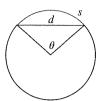
- **51.** Find constants A and B such that the function $y = A \sin x + B \cos x$ satisfies the differential equation $y'' + y' - 2y = \sin x.$
- **52.** (a) Evaluate $\lim_{x \to \infty} x \sin \frac{1}{x}$.
 - (b) Evaluate $\lim_{x\to 0} x \sin \frac{1}{x}$.
- A (c) Illustrate parts (a) and (b) by graphing $y = x \sin(1/x)$.
 - 53. Differentiate each trigonometric identity to obtain a new (or familiar) identity.


(a)
$$\tan x = \frac{\sin x}{\cos x}$$

(b)
$$\sec x = \frac{1}{\cos x}$$

(a)
$$\tan x = \frac{\sin x}{\cos x}$$

(c) $\sin x + \cos x = \frac{1 + \cot x}{\csc x}$


54. A semicircle with diameter PQ sits on an isosceles triangle PQR to form a region shaped like a two-dimensional ice-cream cone, as shown in the figure. If $A(\theta)$ is the area of the semicircle and $B(\theta)$ is the area of the triangle, find

$$\lim_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)}$$

55. The figure shows a circular arc of length s and a chord of length d, both subtended by a central angle θ . Find

$$\lim_{\theta \to 0^+} \frac{s}{d}$$

56. Let
$$f(x) = \frac{x}{\sqrt{1 - \cos 2x}}$$

- (a) Graph f. What type of discontinuity does it appear to have at 0?
- (b) Calculate the left and right limits of f at 0. Do these values confirm your answer to part (a)?

2.5 The Chain Rule

Suppose you are asked to differentiate the function

$$F(x) = \sqrt{x^2 + 1}$$

The differentiation formulas you learned in the previous sections of this chapter do not enable you to calculate F'(x).

Observe that F is a composite function. In fact, if we let $y = f(u) = \sqrt{u}$ and let $u = g(x) = x^2 + 1$, then we can write y = F(x) = f(g(x)), that is, $F = f \circ g$. We know how to differentiate both f and g, so it would be useful to have a rule that tells us how to find the derivative of $F = f \circ g$ in terms of the derivatives of f and g.

It turns out that the derivative of the composite function $f \circ g$ is the product of the derivatives of f and g. This fact is one of the most important of the differentiation rules and is called the *Chain Rule*. It seems plausible if we interpret derivatives as rates of change. Regard du/dx as the rate of change of u with respect to u, and u as the rate of change of u with respect to u, and u changes twice as fast as u and u changes three times as fast as u, then it seems reasonable that u changes six times as fast as u, and so we expect that

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

The Chain Rule If g is differentiable at x and f is differentiable at g(x), then the composite function $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at x and F' is given by the product

$$F'(x) = f'(g(x)) \cdot g'(x)$$

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions, then

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

See Section 1.3 for a review of composite functions.