1.) Consider the given system $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 3 & 6 & -1 \\ 1 & 2 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 8 \\ 0\end{array}\right]$
a.) Find the $L U$-decomposition of A.
b.) Using the $L U$-decomposition of A, find the solution to the system $A x=b$.
2.) Consider the given system $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{rrr}2 & 0 & -1 \\ -3 & 0 & 2 \\ -2 & 1 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
a.) Find A^{-1} if it exists.
b.) Solve the system $A \mathbf{x}=\mathbf{b}$.
3.) Given the differential equation

$$
-u^{\prime \prime}(x)=\delta(x-1)-\delta(x-2) \quad u^{\prime}(0)=0, \quad u^{\prime}(3)=0
$$

a.) Find the continuous solution. Is it unique? Graph your answer.
b.) Write the difference equations for the same differential equation for $\mathrm{n}=2$ and solve it. Graph your answer.
3.) Classify the following matrices as positive-definite, semi-definite, indefinite.

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2 \\
3 & 2 & 1
\end{array}\right] \quad\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 0 & 2 \\
0 & 2 & 3
\end{array}\right]
$$

4.) The matrix $A=\left[\begin{array}{rr}2 & -2 \\ -2 & 5\end{array}\right]$ is positive definite.
a.) Write the energy function of A.
b.) Compute the $L D L^{T}$ decomposition of A and multiply $\mathbf{x}^{T} L D L^{T} \mathbf{x}$ to write the energy function as a sum of squares.
c.) Compute the $Q \Lambda Q^{T}$ decomposition of A and multiply $\mathbf{x}^{T} Q \Lambda Q^{T} \mathbf{x}$ to write the energy function as a sum of squares.
5.) We are given a spring-mass system with three masses $m_{1}=m, m_{2}=4 m, m_{3}=m$ and three identical springs $c_{1}=c_{2}=c_{3}=c$. The upper end is fixed and lower end is free. Assume that the system is in an equilibrium. Find the displacements u_{1}, u_{2}, u_{3} of the three masses, respectively.
6.) We are given a spring-mass system with two masses $m_{1}=2, m_{2}=6$ and three springs with spring constants $c_{1}=4, c_{2}=6, c_{3}=12$. Both ends are fixed. Assume that there is no friction and external force acting, and the masses are moving up and down.
Find the displacements of the masses $u(t)=\left[\begin{array}{l}u_{1}(t) \\ u_{2}(t)\end{array}\right]$ at any time t if $\left[\begin{array}{l}u_{1}(0) \\ u_{2}(0)\end{array}\right]=\left[\begin{array}{l}5 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}u_{1}^{\prime}(0) \\ u_{2}^{\prime}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Explain the movement of the masses.
7.) An experiment has been conducted to understand the effect of temperature to the output of a certain chemical reaction. The data is given to the right. It is expected that the relation between output and temperature is linear. Find a function $R(T)=A+B \cdot T$ which models the relation between them best..

Experiment Results	
T (Celcius)	R(Gram)
0	3
3	4
5	6
7	10

