

Q1 ($5+5=10$ pts.) Consider the space transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which reflects points across the $y=x$ plane in space.
(i) Write T as a matrix (using the standard basis).
(ii) Is this transformation invertible? Justify your answer.

Q2 $\left(10+5=15\right.$ pts.) In the following two parts, $\mathbf{A}, \mathbf{w}_{1}, \mathbf{w}_{2}$, and \mathbf{v} are as follows:

$$
\mathbf{A}=\left[\begin{array}{ccccc}
4 & 6 & -2 & -4 & -2 \\
6 & 4 & 0 & -2 & -6 \\
0 & 0 & 2 & 2 & -2 \\
6 & 6 & 0 & -4 & -6 \\
8 & 8 & -2 & -6 & -6
\end{array}\right] \quad \mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{w}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

The vector \mathbf{v} is an eigenvector of \mathbf{A}. One of $\mathbf{w}_{1}, \mathbf{w}_{2}$ is an eigenvector but the other isn't.
(i) Which one of \mathbf{w}_{1} and \mathbf{w}_{2} is the eigenvector? Show your work.
(ii) What is the eigenvalue for the eigenvector \mathbf{v} ? Show your work.

Q3 $(\mathbf{1 0}+\mathbf{1 0}+\mathbf{1 0}=\mathbf{3 0}$ pts.) The following questions deal with a matrix \mathbf{A} which has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=1$ and $\lambda_{3}=-2$ and associated eigenvectors:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

(Solve these questions without computing A.)
(i) What is the determinant of \mathbf{A} ?
(ii) Is A symmetric? Justify your answer.
(iii) What are the eigenvalues and eigenvectors of \mathbf{A}^{2} ?
(iv) What is the solution to $\mathbf{A x}=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$?

Q4 $(5+15+10=30$ pts.) The following parts deal with computations of eigenvalues and eigenvectors.
(i) Find the eigenvalues of $\left[\begin{array}{ccc}2 & -2 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0\end{array}\right]$. (Do not find eigenvectors.)
(ii) The matrix $\left[\begin{array}{ccc}2 & 2 & 0 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]$ has eigenvalues $\lambda=2,2,0$. Find associated eigenvectors.

What is unusual about your result?
(iii) Compute the matrix \mathbf{A} with eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=0$ and $\lambda_{3}=1$ and associated eigenvectors

$$
\mathbf{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

(Write your answer as a matrix - not as a product of matrices.)

Q5 $(5+10=15$ pts.) A is a real, symmetric matrix with eigenvectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] .
$$

(i) Are the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} all orthogonal to each other?
(ii) What can you say about the eigenvalues associated to $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} ?
(Note: There is no mistake in this problem: There are real, symmetric matrices with these eigenvectors.)

