Northern Cyprus Campus			
Math 210 Applied mathematics for engineers Final Ex		Final Exam	11.08.2009
Last Name : Name : Student No:	$\begin{array}{rllllllllllllllllllllllllllllllllllll$		gnature
4 QUESTIONS ON 4 PAGES TOTAL 100 POINTS			AL 100 POINTS
1 2 3 4			

M E T U Northern Cyprus Campus

Q1 (6+7+6+6=25 pts.) Suppose that an elastic membrane, with the shape of a unit disk centered at the origin, in the $x_1 - x_2$ plane is subjected to an elastic deformation taking (x_1, x_2) to $T(x_1, x_2) = (5x_1 + 3x_2, 4x_1 + x_2)$.

(a) Show that T is a linear transformation, and write the matrix corresponding to T with respect to the basis $\{(1,0), (0,1)\}$.

(b) Find the eigenvalues and eigenvectors of T.

(c) Find the new shape of the membrane after the transformation, and draw it.

(d) Find a basis consisting of eigenvectors of T, and write the matrix corresponding to T with respect to this basis.

Q2 (13+12=25 pts.) Let C be the boundary of the triangle with vertices (0,0), (1,0) and (0,1), traversed counterclockwise.

(a) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = (x, 2y + x)$, by directly parameterizing the path.

(b) Evaluate the same integral by using Green's theorem.

Q3 (8+8+9 pts.) (a) Show that $div(curl \mathbf{F}) = 0$ for any vector field \mathbf{F} on \mathbb{R}^3 .

(b) Use part (a) to show that $\mathbf{G}(x, y, z) = (xy, x + y, z)$ cannot be written as the curl of a vector field \mathbf{F} .

(c) Let $\mathbf{H}(x, y, z) = (-x, -y, 2z + x)$. Check that $div \mathbf{H} = 0$ and find a vector field \mathbf{F} such that $\mathbf{H} = curl \mathbf{F}$ (Hint: There are many possible answers. Make some choices).

Q4 (9+8+8=25 pts.) Suppose that we want to apply Newton-Ralphson iteration to find the roots of the equation f(x) = 0. We start from x_0 , and denote the resulting sequence by x_1, x_2, x_3, \ldots Suppose that f is differentiable everywhere.

(a) Show that if x_0 is a local minimum or maximum of f, then x_1 is undefined.

(b) Do there exist functions f such that x_1 is defined, but x_2 is undefined? (Drawing graphs would be enough for giving examples).

(c) Can one have a "ping-pong effect"? Namely, can the sequence be $x_0, x_1, x_0, x_1, x_0, \ldots$ with $x_0 \neq x_1$?