M ETU

Northern Cyprus Campus

Q1 $(6+7+6+6=25$ pts.) Suppose that an elastic membrane, with the shape of a unit disk centered at the origin, in the $x_{1}-x_{2}$ plane is subjected to an elastic deformation taking (x_{1}, x_{2}) to $T\left(x_{1}, x_{2}\right)=\left(5 x_{1}+3 x_{2}, 4 x_{1}+x_{2}\right)$.
(a) Show that T is a linear transformation, and write the matrix corresponding to T with respect to the basis $\{(1,0),(0,1)\}$.
(b) Find the eigenvalues and eigenvectors of T.
(c) Find the new shape of the membrane after the transformation, and draw it.
(d) Find a basis consisting of eigenvectors of T, and write the matrix corresponding to T with respect to this basis.

Q2 ($\mathbf{1 3}+\mathbf{1 2}=\mathbf{2 5} \mathbf{~ p t s .)}$ Let C be the boundary of the triangle with vertices $(0,0),(1,0)$ and $(0,1)$, traversed counterclockwise.
(a) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=(x, 2 y+x)$, by directly parameterizing the path.
(b) Evaluate the same integral by using Green's theorem.

Q3 $\left(8+8+9\right.$ pts.) (a) Show that $\operatorname{div}(\operatorname{cur} l \mathbf{F})=0$ for any vector field \mathbf{F} on \mathbb{R}^{3}.
(b) Use part (a) to show that $\mathbf{G}(x, y, z)=(x y, x+y, z)$ cannot be written as the curl of a vector field \mathbf{F}.
(c) Let $\mathbf{H}(x, y, z)=(-x,-y, 2 z+x)$. Check that $\operatorname{div} \mathbf{H}=0$ and find a vector field \mathbf{F} such that $\mathbf{H}=\operatorname{curl} \mathbf{F}$ (Hint: There are many possible answers. Make some choices).

Q4 ($9+8+8=25$ pts.) Suppose that we want to apply Newton-Ralphson iteration to find the roots of the equation $f(x)=0$. We start from x_{0}, and denote the resulting sequence by $x_{1}, x_{2}, x_{3}, \ldots$. Suppose that f is differentiable everywhere.
(a) Show that if x_{0} is a local minimum or maximum of f, then x_{1} is undefined.
(b) Do there exist functions f such that x_{1} is defined, but x_{2} is undefined? (Drawing graphs would be enough for giving examples).
(c) Can one have a "ping-pong effect"? Namely, can the sequence be $x_{0}, x_{1}, x_{0}, x_{1}, x_{0}, \ldots$ with $x_{0} \neq x_{1}$?

