Northern Cyprus Campus		
Math 210 Applied mathematics for engineers I. Exam 18.07.2009		
Last Name : Name : Student No:	Dept./Sec. : Time : 10: 30 Duration : 100 minutes	Signature
4 QUESTIONS ON 4 PAGES	ſ	FOTAL 100 POINTS

M E T U Northern Cyprus Campus

Q1 (25 pts.) Consider the system of equations

2x +3y +az = 1x +2y +0z = b4x +3y +5z = a.

Find all solutions of the system. Please carefully distinguish the different possibilities depending on the values of a and b.

$$A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & -2 \\ 5 & 1 & 2 \\ -4 & 0 & 2 \end{bmatrix}$$

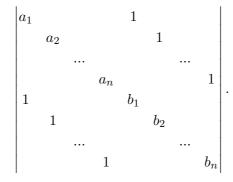
Determine bases for the row space and the column space of A, and find the rank of A. Identify the row space as a subset of \mathbb{R}^3 and the column space as a subset of \mathbb{R}^4 .

Q3 (5+5+5+5+5=25 pts.) Answer the following (independent) questions. Assume that A and B are $n \times n$ matrices. Give reasons (proofs or counterexamples) supporting your answers.

(a) Is it always true that rank(A + B) is greater than or equal to at least one of rank(A) or rank(B)?

(b) Consider the set of vectors $V = \{(v_1, v_2) \in \mathbb{R}^2 | |v_1 + v_2| < 10\}$. Is V a vector space?

(c) Suppose that V is a vector space, and $S \subset V$ is a linearly independent subset. Is every subset of S also linearly independent?


(d) True or false: If a linear system has more unknowns than equations, then it cannot have a unique solution.

(e) True or false: If a linear system has more equations than unknowns, then it cannot have a unique solution.

Q4 (10+15=25 pts.) (a) Evaluate the following determinant:

$$\begin{vmatrix} 3 & 0 & 1 & 0 \\ 0 & 5 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & -1 \end{vmatrix}.$$

(b) Find a formula (in terms of a_i, b_i) for the value of the following determinant (all the blank spaces are zeros) :

