Northern Cyprus Campus

Q1 (25 pts.) Consider the system of equations

$$
\begin{aligned}
& 2 x+3 y+a z=1 \\
& x+2 y+0 z=b \\
& 4 x+3 y+5 z=a .
\end{aligned}
$$

Find all solutions of the system. Please carefully distinguish the different possibilities depending on the values of a and b.

Q2 (25 pts.) Let

$$
A=\left[\begin{array}{ccc}
1 & -2 & 4 \\
2 & 0 & -2 \\
5 & 1 & 2 \\
-4 & 0 & 2
\end{array}\right]
$$

Determine bases for the row space and the column space of A, and find the rank of A. Identify the row space as a subset of \mathbb{R}^{3} and the column space as a subset of \mathbb{R}^{4}.

Q3 (5+5+5+5+5=25 pts.) Answer the following (independent) questions. Assume that A and B are $n \times n$ matrices. Give reasons (proofs or counterexamples) supporting your answers.
(a) Is it always true that $\operatorname{rank}(A+B)$ is greater than or equal to at least one of $\operatorname{rank}(A)$ or $\operatorname{rank}(B)$?
(b) Consider the set of vectors $V=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}| | v_{1}+v_{2} \mid<10\right\}$. Is V a vector space?
(c) Suppose that V is a vector space, and $S \subset V$ is a linearly independent subset. Is every subset of S also linearly independent?
(d) True or false: If a linear system has more unknowns than equations, then it cannot have a unique solution.
(e) True or false: If a linear system has more equations than unknowns, then it cannot have a unique solution.

Q4 ($\mathbf{1 0}+\mathbf{1 5}=\mathbf{2 5}$ pts.) (a) Evaluate the following determinant:

$$
\left|\begin{array}{cccc}
3 & 0 & 1 & 0 \\
0 & 5 & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & -1
\end{array}\right| .
$$

(b) Find a formula (in terms of a_{i}, b_{i}) for the value of the following determinant (all the blank spaces are zeros) :

$$
\left|\begin{array}{lllllll}
a_{1} & & & & 1 & & \\
& a_{2} & & & & 1 & \\
\\
& & \ldots & & & & \ldots \\
\\
1 & & & & a_{n} & & \\
& & & \\
& 1 & & & & b_{1} & \\
& & & \\
& & \ldots & & & & b_{2} \\
& & & 1 & & & \\
& & & \\
& & & & b_{n}
\end{array}\right| .
$$

