METU
Northern Cyprus Campus

MATH 210 Applied Mathematics for Engineers					
Last Name: Name: Student No:	Dept/Sec: Time: 13:00 Duration: 120 minutes	Signature:			
4 QUESTIONS ON 4 PAGES	2	4	TOTAL 100 POINTS		
1	2				

Q1. (25 pts.) If soccer team A wins the championship, 10% of the fans supporting team \mathbf{B} and 10% of the fans supporting team \mathbf{C} change their minds and support team $\mathbf{A} .10 \%$ of the fans supporting team \mathbf{A} change their minds (due to mismanagement) and equally choose teams \mathbf{B} and \mathbf{C} even though team \mathbf{A} wins the championship. If team \mathbf{A} wins the championship year after year for a long time, calculate the proportion of fans supporting teams \mathbf{A}, \mathbf{B} and \mathbf{C}.

Q2. (25 pts.) a) For each of the following vector fields find whether vector field \vec{F} can be expressed in terms of gradient of a scalar field f (i.e., $\vec{F}=\vec{\nabla} f$)

1. $\vec{F}_{1}=\left(3 x^{2} y+e^{x}\right) \vec{i}+x^{3} \vec{j}$
2. $\vec{F}_{2}=z e^{x z} \vec{i}+\vec{j}+x e^{x z} \vec{k}$
3. $\vec{F}_{3}=\sin (2 x) \vec{i}+\cos (2 y) \vec{j}+\left(e^{x}+z\right) \vec{k}$
b) For vector fields provided in (a), evaluate the following line integrals along $y=x^{2}$ from $(0,0,0)$ to $(1,1,0)$
4. $\int \vec{F}_{1} \cdot d \vec{r}=$
5. $\int \vec{F}_{2} \cdot d \vec{r}=$
6. $\int \vec{F}_{3} \cdot d \vec{r}=$

Q3. (25 pts.) Consider the nonlinear equation $f(x)=-x^{2}+3 x-2=0$ which can be written as $x=g(x)=-x^{2}+4 x-2$. Find the range of the initial guess that will result in
a) Divergent fixed point iteration
b) Convergent fixed point iteration (Also specify which root fixed point iterations converge as a function of the initial guess x_{0}).

Q4. (25 pts.) a) Let $z=\cos (x)\left(x^{2}+y^{2}\right)$, find the equation for the tangent plane at $\left(\frac{\pi}{2}, 1,0\right)$
b) Find the volume of the tetrahedron with vertices $(1,1,1),(2,2,2),(1,-1,4)$ and $(-2,1,5)$
c) Consider a triangle with vertices $(1,1,1),(2,2,2),(4,1,5)$. There is a light source at a great distance from the triangle. If the light rays are traveling in $-\vec{k}$ direction, find the shadow area of the triangle on the $x-y$ plane.
d) Find a vector field \vec{F} in the x-y plane which satisfies the following equations:
$\vec{\nabla} \cdot \vec{F}>0$
$\vec{\nabla} \times \vec{F}=-\vec{k}$

