Normern Cyprus Campus		
Math 210 Applied mathematics for engineers I. Exam 30.03.2009		
Last Name : Name : Student No:	Dept./Sec. : Time : 17:40 Duration : 120 minutes	Signature
4 QUESTIONS ON 4 PAGES		TOTAL 100 POINTS
1 2 3 4		

M E T U Northern Cyprus Campus

Q1 (12+13=25 pts.) (a) Consider the system

 $\begin{aligned} x + 2y &= 2b \\ x + 4y &= 2 \\ 2x + 5y &= 0. \end{aligned}$

Find the value of b such that this system has a unique solution. Then, find the solution.

(b) Consider the system

$$x + y + 2z = 1$$
$$2x + 3y = 1$$
$$bx + 3y + 3z = a.$$

Find the values of a and b so that the system has infinitely many solutions. Then, find the solution set.

 $\mathbf{Q2}$ (25 pts.) Let

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

(a) Find the determinant of A by triangulating the matrix.

(b) Find the inverse of A using the Gauss-Jordan method.

Q3 (25 pts.) Answer the following (independent) questions. Assume that A and B are $n \times n$ matrices, and x is an $n \times 1$ vector. Give reasons (proofs or counterexamples) supporting your answers.

(a) Suppose that $A^2 = B^2$. Is it necessarily true that A = B or A = -B?

(b) Consider the set of vectors $V = \{(v_1, v_2) \in \mathbb{R}^2 | v_1 - v_2 = 10\}$. Is V a vector space?

(c) If $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions, does $BA\mathbf{x} = \mathbf{0}$ always have infinitely many solutions?

(d) If $A\mathbf{x} = \mathbf{0}$ has a unique solution, does $BA\mathbf{x} = \mathbf{0}$ always have a unique solution?

(e) Is it true that $rank(AB) = rank(B^T A^T)$?

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 3 & 11 \\ 3 & 0 & 6 \\ 4 & 2 & 14 \\ -1 & 5 & 13 \end{bmatrix}$$

Find the rank of A, a basis for the row space of A, and a basis for the column space of A.