Northern Cyprus Campus

Q1 ($\mathbf{1 2}+\mathbf{1 3}=\mathbf{2 5}$ pts.) (a) Consider the system

$$
\begin{array}{r}
x+2 y=2 b \\
x+4 y=2 \\
2 x+5 y=0 .
\end{array}
$$

Find the value of b such that this system has a unique solution. Then, find the solution.
(b) Consider the system

$$
\begin{aligned}
x+y+2 z & =1 \\
2 x+3 y & =1 \\
b x+3 y+3 z & =a .
\end{aligned}
$$

Find the values of a and b so that the system has infinitely many solutions. Then, find the solution set.

Q2 (25 pts.) Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Find the determinant of A by triangulating the matrix.
(b) Find the inverse of A using the Gauss-Jordan method.

Q3 (25 pts.) Answer the following (independent) questions. Assume that A and B are $n \times n$ matrices, and \mathbf{x} is an $n \times 1$ vector. Give reasons (proofs or counterexamples) supporting your answers.
(a) Suppose that $A^{2}=B^{2}$. Is it necessarily true that $A=B$ or $A=-B$?
(b) Consider the set of vectors $V=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid v_{1}-v_{2}=10\right\}$. Is V a vector space?
(c) If $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions, does $B A \mathbf{x}=\mathbf{0}$ always have infinitely many solutions?
(d) If $A \mathbf{x}=\mathbf{0}$ has a unique solution, does $B A \mathbf{x}=\mathbf{0}$ always have a unique solution?
(e) Is it true that $\operatorname{rank}(A B)=\operatorname{rank}\left(B^{T} A^{T}\right)$?

Q4 (25 pts.) Let

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 3 & 11 \\
3 & 0 & 6 \\
4 & 2 & 14 \\
-1 & 5 & 13
\end{array}\right]
$$

Find the rank of A, a basis for the row space of A, and a basis for the column space of A.

