14.1 **Exercises**

- 1. In Example 2 we considered the function W = f(T, v), where W is the wind-chill index, T is the actual temperature, and v is the wind speed. A numerical representation is given in Table 1.
 - (a) What is the value of f(-15, 40)? What is its meaning?
 - (b) Describe in words the meaning of the question "For what value of v is f(-20, v) = -30?" Then answer the question.
 - (c) Describe in words the meaning of the question "For what value of T is f(T, 20) = -49?" Then answer the question.
 - (d) What is the meaning of the function W = f(-5, v)? Describe the behavior of this function.
 - (e) What is the meaning of the function W = f(T, 50)? Describe the behavior of this function.
- **2.** The temperature-humidity index I (or humidex, for short) is the perceived air temperature when the actual temperature is T and the relative humidity is h, so we can write I = f(T, h). The following table of values of I is an excerpt from a table compiled by Environment Canada.

Apparent temperature as a function of temperature and humidity

Relative humidity (%) h 20 30 40 50 60 70 Actual temperature (°C) 20 20 20 20 21 22 23 25 25 25 26 28 30 32 30 30 31 34 36 38 41 35 39 36 42 45 48 51 40 43 47 51 55 59 63

- (a) What is the value of f(35, 60)? What is its meaning?
- (b) For what value of h is f(30, h) = 36?
- (c) For what value of T is f(T, 40) = 42?
- (d) What are the meanings of the functions I = f(20, h)and I = f(40, h)? Compare the behavior of these two functions of h.
- **3.** A manufacturer has modeled its yearly production function P(the monetary value of its entire production in millions of dollars) as a Cobb-Douglas function

$$P(L, K) = 1.47L^{0.65}K^{0.35}$$

where L is the number of labor hours (in thousands) and K is the invested capital (in millions of dollars). Find P(120, 20)and interpret it.

4. Verify for the Cobb-Douglas production function

$$P(L, K) = 1.01L^{0.75}K^{0.25}$$

discussed in Example 3 that the production will be doubled if both the amount of labor and the amount of capital are doubled. Determine whether this is also true for the general production function

$$P(L, K) = bL^{\alpha}K^{1-\alpha}$$

5. A model for the surface area of a human body is given by the

$$S = f(w, h) = 0.1091w^{0.425}h^{0.725}$$

where w is the weight (in pounds), h is the height (in inches), and S is measured in square feet.

- (a) Find f(160, 70) and interpret it.
- (b) What is your own surface area?
- 6. The wind-chill index W discussed in Example 2 has been modeled by the following function:

$$W(T, v) = 13.12 + 0.6215T - 11.37v^{0.16} + 0.3965Tv^{0.16}$$

Check to see how closely this model agrees with the values in Table 1 for a few values of T and v.

- 7. The wave heights h in the open sea depend on the speed vof the wind and the length of time t that the wind has been blowing at that speed. Values of the function h = f(v, t) are recorded in meters in Table 4.
 - (a) What is the value of f(80, 15)? What is its meaning?
 - (b) What is the meaning of the function h = f(60, t)? Describe the behavior of this function.
 - (c) What is the meaning of the function h = f(v, 30)? Describe the behavior of this function.

TABLE 4

Duration (hours)

Wind speed (km/h)	v	5	10	15	20	30	40	50
	20	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	30	1.2	1.3	1.5	1.5	1.5	1.6	1.6
	40	1.5	2.2	2.4	2.5	2.7	2.8	2.8
	60	2.8	4.0	4.9	5.2	5.5	5.8	5.9
	80	4.3	6.4	7.7	8.6	9.5	10.1	10.2
	100	5.8	8.9	11.0	12.2	13.8	14.7	15.3
	120	7.4	11.3	14.4	16.6	19.0	20.5	21.1

8. A company makes three sizes of cardboard boxes: small, medium, and large. It costs \$2.50 to make a small box, \$4.00 for a medium box, and \$4.50 for a large box. Fixed costs are \$8000.

- (a) Express the cost of making x small boxes, y medium boxes, and z large boxes as a function of three variables: C = f(x, y, z).
- (b) Find f(3000, 5000, 4000) and interpret it.
- (c) What is the domain of f?
- **g.** Let $g(x, y) = \cos(x + 2y)$.
 - (a) Evaluate g(2, -1).
 - (b) Find the domain of g.
 - (c) Find the range of q.
- 10. Let $F(x, y) = 1 + \sqrt{4 y^2}$.
 - (a) Evaluate F(3, 1).
 - (b) Find and sketch the domain of F.
 - (c) Find the range of F.
- 11. Let $f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z} + \ln(4 x^2 y^2 z^2)$.
 - (a) Evaluate f(1, 1, 1).
 - (b) Find and describe the domain of f.
- **12.** Let $g(x, y, z) = x^3 y^2 z \sqrt{10 x y z}$.
 - (a) Evaluate g(1, 2, 3).
 - (b) Find and describe the domain of g.
- 13-22 Find and sketch the domain of the function.

13.
$$f(x, y) = \sqrt{x + y}$$

14.
$$f(x, y) = \sqrt{xy}$$

15.
$$f(x, y) = \ln(9 - x^2 - 9y^2)$$
 16. $f(x, y) = \sqrt{x^2 - y^2}$

16.
$$f(x, y) = \sqrt{x^2 - y^2}$$

17.
$$f(x, y) = \sqrt{1 - x^2} - \sqrt{1 - y^2}$$

18.
$$f(x, y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}$$

19.
$$f(x, y) = \frac{\sqrt{y - x^2}}{1 - x^2}$$

20.
$$f(x, y) = \arcsin(x^2 + y^2 - 2)$$

21.
$$f(x, y, z) = \sqrt{1 - x^2 - y^2 - z^2}$$

22.
$$f(x, y, z) = \ln(16 - 4x^2 - 4y^2 - z^2)$$

- 23-31 Sketch the graph of the function.
- **23.** f(x, y) = 1 + y
- **24.** f(x, y) = 2 x

- **25.** f(x, y) = 10 4x 5y **26.** $f(x, y) = e^{-y}$ **27.** $f(x, y) = y^2 + 1$ **28.** $f(x, y) = 1 + 2x^2 + 2y^2$
- **29.** $f(x, y) = 9 x^2 9y^2$ **30.** $f(x, y) = \sqrt{4x^2 + y^2}$
- 31. $f(x, y) = \sqrt{4 4x^2 y^2}$
- 32. Match the function with its graph (labeled I–VI). Give reasons for your choices.
 - (a) f(x, y) = |x| + |y|
- (b) f(x, y) = |xy|
- (c) $f(x, y) = \frac{1}{1 + x^2 + y^2}$ (d) $f(x, y) = (x^2 y^2)^2$
- (e) $f(x, y) = (x y)^2$
- $(f) f(x, y) = \sin(|x| + |y|)$

33. A contour map for a function f is shown. Use it to estimate the values of f(-3, 3) and f(3, -2). What can you say about the shape of the graph?

- 34. Shown is a contour map of atmospheric pressure in North America on August 12, 2008. On the level curves (called isobars) the pressure is indicated in millibars (mb).
 - (a) Estimate the pressure at C (Chicago), N (Nashville), S (San Francisco), and V (Vancouver).
 - (b) At which of these locations were the winds strongest?

35. Level curves (isothermals) are shown for the water temperature (in °C) in Long Lake (Minnesota) in 1998 as a function of depth and time of year. Estimate the temperature in the lake on June 9 (day 160) at a depth of 10 m and on June 29 (day 180) at a depth of 5 m.

36. Two contour maps are shown. One is for a function f whose graph is a cone. The other is for a function g whose graph is a paraboloid. Which is which, and why?

- **37.** Locate the points A and B on the map of Lonesome Mountain (Figure 12). How would you describe the terrain near A? Near B?
- 38. Make a rough sketch of a contour map for the function whose graph is shown.

39-42 A contour map of a function is shown. Use it to make a rough sketch of the graph of f.

39.

40.

41.

43-50 Draw a contour map of the function showing several level curves.

43.
$$f(x, y) = (y - 2x)^2$$

44.
$$f(x, y) = x^3 - y$$

45.
$$f(x, y) = \sqrt{x} + y$$

45.
$$f(x, y) = \sqrt{x} + y$$
 46. $f(x, y) = \ln(x^2 + 4y^2)$

47.
$$f(x, y) = ye^x$$

48.
$$f(x, y) = y \sec x$$

49.
$$f(x, y) = \sqrt{y^2 - x^2}$$

50.
$$f(x, y) = y/(x^2 + y^2)$$

51-52 Sketch both a contour map and a graph of the function and compare them.

51.
$$f(x, y) = x^2 + 9y^2$$

51.
$$f(x, y) = x^2 + 9y^2$$
 52. $f(x, y) = \sqrt{36 - 9x^2 - 4y^2}$

53. A thin metal plate, located in the xy-plane, has temperature T(x, y) at the point (x, y). The level curves of T are called isothermals because at all points on such a curve the temperature is the same. Sketch some isothermals if the temperature function is given by

$$T(x, y) = \frac{100}{1 + x^2 + 2y^2}$$

54. If V(x, y) is the electric potential at a point (x, y) in the xy-plane, then the level curves of V are called equipotential curves because at all points on such a curve the electric potential is the same. Sketch some equipotential curves if $V(x, y) = c/\sqrt{r^2 - x^2 - y^2}$, where c is a positive constant.

55-58 Use a computer to graph the function using various domains and viewpoints. Get a printout of one that, in your opinion, gives a good view. If your software also produces level curves, then plot some contour lines of the same function and compare with the graph.

55.
$$f(x, y) = xy^2 - x^3$$
 (monkey saddle)

56.
$$f(x, y) = xy^3 - yx^3$$
 (dog saddle)

57.
$$f(x, y) = e^{-(x^2+y^2)/3}(\sin(x^2) + \cos(y^2))$$

$$\mathbf{58.}\ f(x,y) = \cos x \cos y$$

59-64 Match the function (a) with its graph (labeled A-F below) and (b) with its contour map (labeled I-VI). Give reasons for your choices.

59.
$$z = \sin(xy)$$

60.
$$z = e^x \cos y$$

61.
$$z = \sin(x - y)$$

62.
$$z = \sin x - \sin y$$

63.
$$z = (1 - x^2)(1 - y^2)$$

64.
$$z = \frac{x - y}{1 + x^2 + y^2}$$

D

В

C

Ш

- 65-68 Describe the level surfaces of the function.
- **65.** f(x, y, z) = x + 3y + 5z
- **66.** $f(x, y, z) = x^2 + 3y^2 + 5z^2$
- **67.** $f(x, y, z) = y^2 + z^2$
- **68.** $f(x, y, z) = x^2 y^2 z^2$
- **69–70** Describe how the graph of g is obtained from the graph of f.
- **69.** (a) g(x, y) = f(x, y) + 2
 - (b) g(x, y) = 2f(x, y)
 - (c) g(x, y) = -f(x, y)
 - (d) g(x, y) = 2 f(x, y)
- **70.** (a) g(x, y) = f(x 2, y)
 - (b) g(x, y) = f(x, y + 2)
 - (c) g(x, y) = f(x + 3, y 4)
- 71–72 Use a computer to graph the function using various domains and viewpoints. Get a printout that gives a good view of the "peaks and valleys." Would you say the function has a maximum value? Can you identify any points on the graph that you might consider to be "local maximum points"? What about "local minimum points"?
 - **71.** $f(x, y) = 3x x^4 4y^2 10xy$
 - **72.** $f(x, y) = xye^{-x^2-y^2}$
- 73-74 Use a computer to graph the function using various domains and viewpoints. Comment on the limiting behavior of the function. What happens as both x and y become large? What happens as (x, y) approaches the origin?
 - **73.** $f(x, y) = \frac{x + y}{x^2 + y^2}$
- **74.** $f(x, y) = \frac{xy}{x^2 + y^2}$
- **75.** Use a computer to investigate the family of functions $f(x, y) = e^{cx^2+y^2}$. How does the shape of the graph depend on c?

76. Use a computer to investigate the family of surfaces

$$z = (ax^2 + by^2)e^{-x^2-y^2}$$

How does the shape of the graph depend on the numbers a and b?

- 77. Use a computer to investigate the family of surfaces $z = x^2 + y^2 + cxy$. In particular, you should determine the transitional values of c for which the surface changes from one type of quadric surface to another.
- 78. Graph the functions

$$f(x, y) = \sqrt{x^2 + y^2}$$

$$f(x, y) = e^{\sqrt{x^2 + y^2}}$$

$$f(x, y) = \ln \sqrt{x^2 + y^2}$$

$$f(x, y) = \sin(\sqrt{x^2 + y^2})$$

and

$$f(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$$

In general, if g is a function of one variable, how is the graph of

$$f(x, y) = g(\sqrt{x^2 + y^2})$$

obtained from the graph of g?

79. (a) Show that, by taking logarithms, the general Cobb Douglas function $P = bL^{\alpha}K^{1-\alpha}$ can be expressed as

$$\ln \frac{P}{K} = \ln b + \alpha \ln \frac{L}{K}$$

- (b) If we let $x = \ln(L/K)$ and $y = \ln(P/K)$, the equation in part (a) becomes the linear equation $y = \alpha x + \ln b$. Use Table 2 (in Example 3) to make a table of values of $\ln(L/K)$ and $\ln(P/K)$ for the years 1899–1922. Then use a graphing calculator or computer to find the least squares regression line through the points $(\ln(L/K), \ln(P/K))$.
- (c) Deduce that the Cobb-Douglas production function is $P = 1.01L^{0.75}K^{0.25}$.

14.2 Limits and Continuity

Let's compare the behavior of the functions

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
 and $g(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$

as x and y both approach 0 [and therefore the point (x, y) approaches the origin]. Tables 1 and 2 show values of f(x, y) and g(x, y), correct to three decimal places, for points (x, y) near the origin. (Notice that neither function is defined at the origin.)