$\mathbf{M} \ \mathbf{E} \ \mathbf{T} \ \mathbf{U} - \mathbf{N} \ \mathbf{C} \ \mathbf{C}$ Mathematics Group

	Calculus with Analytic Geometry			
	Final Exam			
	: MAT 119	Last Name	· :	
	: 2010-2011	Name	:	Stud. No:
Semester Instructors	: A.D./H.T./B.W.	Dept.	:	Sec. No :
		Signature	:	
Date Time	: 09.06.2011 : 13.00	6 Questions on 8 Pages		
Duration	: 120 minutes	Total 100 Points		
1 (18) 2 (24)	3 (12) 4 (15) 5 (21) 6 (1	0)		

Q.1 (6
$$\times$$
 3 = 18 pts) Evaluate the following limits:
(a) $\lim_{x\to 0} \frac{\int_x^0 (\mathrm{e}^t+t-1) \;\mathrm{d}t}{x^2}$

(b)
$$\lim_{x \to \infty} (1 + e^{-x})^x$$

$$\mathbf{(c)} \lim_{x \to 0} \frac{\cos x^2}{x^2}$$

(d)
$$\lim_{x\to 0} \frac{\sin x^2 - x^2}{x^6}$$

(e)
$$\lim_{x\to\infty} (\ln x)^{1/x}$$

$$\mathbf{(f)} \lim_{x \to 0^+} x^{\csc x}$$

Q.2 (6 × 4 = 24 pts) Evaluate the following integrals: (a) $\int \frac{\sqrt{x+1}}{x-3} dx$

(a)
$$\int \frac{\sqrt{x+1}}{x-3} \, \mathrm{d}x$$

(b)
$$\int x^{3/2} \ln(5x) \, \mathrm{d}x$$

(c)
$$\int \sin^3(2x) \cos^4(2x) dx$$

$$(\mathbf{d}) \int \frac{x-8}{x^3+4x} \, \mathrm{d}x$$

(e)
$$\int \frac{1}{(x^2 + 4x + 5)^{3/2}} \, \mathrm{d}x$$

$$\mathbf{(f)} \int \frac{x^3 - 1}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

Q.3~(3~ imes~4~=~12~pts) Determine whether the following integrals converge or diverge. If they converge, what do they converge to? (a) $\int_0^4 \frac{x}{x^2 - 4} dx$

(a)
$$\int_0^4 \frac{x}{x^2 - 4} \, \mathrm{d}x$$

(b)
$$\int_4^\infty \frac{1}{\sqrt{x}e^{\sqrt{x}}} \, \mathrm{d}x$$

$$\mathbf{(c)} \int_1^\infty \frac{\sin^4 x + 1}{x^{1/4}} \, \mathrm{d}x$$

- Q.4 (7 + 8 = 15 pts) Consider the region between the curves $y = x^2$ and $y = 2 x^2$ from x = 0 to x = 2.
- (a) Find the volume of the solid obtained by rotating this region about the y-axis.

(b) Find the volume of the solid obtained by rotating this region about the line y = 4.

- Q.5 (3 × 7 = 21 pts) The following parts involve the curve $y = x \tan x$ from y = 0 to $y = \pi/4$.
- (a) Write, but do **NOT** evaluate, the integral which gives the arclength of $y = x \tan x$ from y = 0 to $y = \pi/4$.

(b) Write, but do **NOT** evaluate, the integral which gives the surface area of the surface obtained by rotating $y = x \tan x$ from y = 0 to $y = \pi/4$. about the y-axis.

(c) Write, but do NOT evaluate, the integral which gives the surface area of the surface obtained by rotating $y = x \tan x$ from y = 0 to $y = \pi/4$. about the line y = -1.

Q.6 (10 pts) Use the mean value theorem (MVT) to show that $\ln x < x - 1$ for x > 1.

NOTE. This problem was included also in the 2nd Midterm Exam, which is supposed to be somewhat comrehensive.