METU NCC MAT 260 Mid-Term II

Duration: 120 minutes

Last Name: First Name.	
Student number:	
Instructions:	
1. Check that you have all pages, which are numbered sequentially (6 pages in to	otal)

- 2. Marks are shown in brackets
- 3. Show all significant steps. Few marks (if any) will be given for answers alone.

Question	Mark
1	
2	
3	
4	
5	
Total	

 $\begin{bmatrix} 8+8+4 \text{ points } \end{bmatrix}$ 1. Let

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 & 3 \\ 1 & 0 & 1 & 4 \\ 1 & 0 & -1 & 2 \\ 1 & 1 & 2 & 7 \end{array} \right]$$

(a) Find a basis for the nullspace of A

(b) Find a basis for the row space of A

(c) What is the rank of A and the nullity of A

[10+10 points] 2. Let $W = \{(a,b,c,d) \in \mathbb{R}^4 : a+b+c=d\}$

(a) Show that W is a subspace of \mathbb{R}^4 .

(b) Find a basis for the vector space W, and find dim (W).

[10 + 10 points] 3. Let v = (2,-1,3), $v_1 = (1,0,0)$, $v_2 = (2,2,0)$, $v_3 = (3,3,3)$

(a) Show that the set $S = \{v_1, v_2, v_3\}$ is a basis for \mathbb{R}^3 .

(b) Find the coordinate vector of v relative to the basis S.

[15+5 points] **4.** (a) Find the standard matrix for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that first rotates a vector through an angle $\alpha = \frac{\pi}{3}$, followed by an orthogonal projection on the x-axis, followed by a reflection about the line y = x

(b) Find the standard matrix for T^{-1}

! ~~													
20:	noints	5	For each	of the	following	g statements	write T	or F	inside t	he nai	renthesi	is if 1	the
<i>~</i> 0	Journe	· ·	i oi ouon	OI LIL	10110 11111	5 5000011101105	WILL I	01.1	morac u	no pu	CHILIOS	10 11 1	, I I C

statement is true or false respectively.

- (1) () T is a transformation from \mathbb{R}^n to \mathbb{R}^m , and T(0) = 0, then T is linear.
- (2) () If $\{v_1, v_2\}$ is a linearly dependent set, then $\{v_1 + 2v_2, 3v_1 v_2\}$ is also linearly dependent.
 - (3) () If $\dim(V) = n$, then n is the largest number of linearly dependent vectors in V
 - (4) () If $||u+v||^2 = ||u||^2 + ||v||^2$, then u and v are orthogonal
 - (5) () The transformation $T(x, y) = (x_1 + x_2, x_1 + x_1x_2)$ is linear
 - (6) () The plane x y = 0 in \mathbb{R}^3 has basis vectors (1, 1, 0) and (0, 0, 1)
- (7) () If A is $n \times n$ matrix with det $(A) \neq 0$, then the nullspace of A does not contain any non-zero vectors.
 - (8) () Five non-zero vectors in \mathbb{R}^4 must be linearly dependent.
 - (9) () The set of vectors $S = \{(-1, 18, 7), (-1, 4, 1), (1, 3, 2)\}$ is a basis for \mathbb{R}^3
 - (10) () If $Span(S_1) = Span(S_2)$ then $S_1 = S_2$.