METU NCC MAT 260 Mid-Term I

Duration: 100 minutes

Last Name:	First Name
Student number:	
Instructions:	

- 1. Check that you have all pages, which are numbered sequentially (6 pages in total)
- 2. Marks are shown in brackets
- 3. Show all significant steps. Few marks (if any) will be given for answers alone.

Question	Mark
1	
2	
3	
4	
5	
Total	-

[20 points] 1. Let

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \text{ and } b = \begin{bmatrix} 0 \\ -1 \\ 5 \\ 6 \end{bmatrix}$$

Use the Gauss-Jordan Elemination Method to solve the linear system AX = b.

[20 points] 2. Let

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{array} \right]$$

Determine whether A is invertible and if so find the inverse matrix A^{-1} using elementary row operations.

[20 points] 3. Evaluate the following determinants by using row reduction and properties of determinants

$$\begin{array}{c|cccc}
(a) & 3 & -6 & 9 \\
-2 & 7 & -2 \\
0 & 1 & 5
\end{array}$$

[20 points] 4. Given the matrix

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ d_1 & d_2 & d_3 & d_4 \end{bmatrix}$$
 and $det(A) = 2$

Evaluate the following determinants

(a)
$$\det(3A^{-1})$$

(b)
$$\det(A^{-2})$$

(c)
$$\det \left((A^3)^T \right)$$

$$(d) \begin{bmatrix} -d_1 & -d_2 & -d_3 & -d_4 \\ 2b_1 & 2b_2 & 2b_3 & 2b_4 \\ 3c_1 & 3c_2 & 3c_3 & 3c_4 \\ -a_1 & -a_2 & -a_3 & -a_4 \end{bmatrix}$$

[20 points] 5. For each of the following statements write T or F inside the parenthesis if the statement is true or false respectively.

- (1) () A matrix with a column of zeros must have an inverse
- (2) () If the reduced row-echelon form of the augmented matrix for a linear system has a row of zeros, then the system has infinitely many solutions
 - (3) () If A and B are $n \times n$ matrices, then $(A + B)^2 = A^2 + 2AB + B^2$
- (4) () If A is an invertible matrix and B is obtained from A by row operations, then B is also invertible
 - (5) () Every square matrix can be expressed as a product of elementary matrices
 - (6) () If A is $n \times n$ matrix such that $A^2 3A + I_n = 0$, then $A^{-1} = A 3I$
 - (7) () $\det(I_n + A) = 1 + \det(A)$
 - (8) () If det(A) = 0, then the homogeneous system AX = 0 has infinitely many solutions.
- (9) () If A is a square matrix and B is obtained from A by a single row operation, then we necessarily have det(B) = det(A)
 - (10) () There is no square matrix A such that $det(AA^T) = -1$