METU NCC

WE TO THE					
	Math 2	260	Basic I	inear Algebra Exam II 07	7.05.2008
Last Name Name Student No	:			Instructure: R.B., M.K., D.M. Time : 17:40 Duration : 110 minutes	Signature
6 QUESTIONS ON 6 PAGES					TOTAL 60 POINTS
1 2	3 4	5	6		

Question 1(10 pts.) Determine whether following sets are subspaces of \mathbb{R}^3 . (a) $\{(a, b, 2a - b) \mid a, b \text{ are real numbers}\}$.

⁽b) { $(a,b,a+1) \mid a,b \text{ are real numbers}$ }.

Question 2 (10 pts.) For each of the following statements write T or F inside the parenthesis if the statement is true or false respectively.

- (1) () If $\text{span}(S_1) = \text{span}(S_2)$, then S_1 and S_2 have the same number of elements.
- (2) () If S is a linearly independent set, then any subset of S is also linearly independent.
- (3) () All basis of \mathbb{R}^2 have two elements.
- (4) () The map $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T((x,y) = (x+y+1,x-y)) is linear.
- (5) $(a\cos\theta + b\sin\theta)^2 \le a^2 + b^2$ for all real numbers a, b and θ .
- (6) () If $||v+v||^2 = ||u||^2 ||v||^2$, then u and v are orthogonal.
- (7) () Let v be a vector and k be a positive integer. Then $\{v, kv\}$ is linearly dependent.
- (8) () The orthogonal projection onto the y-axis in \mathbb{R}^2 is one-to-one.
- (9) () The set $\{(1,a) \mid a \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- (10) () Let A be a 2×2 matrix and $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. If $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \bar{y}_2 \end{bmatrix}$ are two solutions of AX = b, then X + Y is also a solution.

Question 3(10 pts.) (a) Find the rank and the nullity of the matrix
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 1 & 1 \\ 3 & -3 & -5 \end{bmatrix}$$
.

(b) Find a basis for the null space of
$$\mathbf{B} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 6 & -3 & 0 \end{bmatrix}$$
.

(c) Determine whether
$$v = (1, 0, 0)$$
 is in the row space of the matrix $\mathbf{C} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$,

Question 4(10 pts.) (a) Let $v_1 = (1,0,2,0,1), v_2 = (2,0,-1,3,0), v_3 = (3,0,1,3,1), v_4 = (-4,0,2,-6,0)$. Find a basis for the subspace of \mathbb{R}^5 spanned by $\{v_1,v_2,v_3,v_4\}$.

(b) Let $w_1 = (1,0,2), w_2 = (2-1,3), w_3 = (0,1,2)$. Determine whether $\{w_1, w_2, w_3\}$ is a basis for \mathbb{R}^3 .

Question 5 (10 pts.) (a) Let $V = M_{2,2}$ be the space of 2×2 matrices. Determine whether $F: V \to V$ given by $F(A) = A^T$ is linear. Here, A^T denotes the transpose of A.

(b) Is the map $T:\mathbb{R}^3 o \mathbb{R}$ defined by T(x,y,z)=x+2y+z linear?

Fig.

Question 6 (10 pts.) Let T be the reflection about xy-plane and let P be the orthogonal projection onto the yz-plane.

(a) Find the standard matrices T,P and $P\circ T.$

(b) Determine whether T,P and $P\circ T$ are one-to-one.