METU NCC

	Math	260	Basic	Linear Algebra Exam I 28	.03.2008	
Last Name Name Student No	:			Instructure: R.B., M.K., D.M. Time : 17: 40 Duration : 100 minutes	Signature	?
6 QUES	TIONS (ON 6 F	PAGES		TOTAL 60	POINTS
1 2	3 4	5	6			

Question 1(10 pts.) Let
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 3 & -2 \\ 2 & 4 & 1 & 7 & 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 7 \\ 7 \end{bmatrix}$. Solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Question 2 (10 pts.) For each of the following statements write T or F inside the parenthesis if the statement is true or false respectively.

- (1) () A linear system of five equations in three unknowns cannot have any solution.
- (2) () If the reduced row-echelon form of the augmented matrix for a linear system has a row consisting of zeroes, then the system must have infinitely many solutions.
- (3) () For every square matrix A, the linear system Ax = 0 has a unique solution x = 0.
- (4) () If A and B are two $n \times n$ matrices, then $(A+B)^2 = A^2 + 2AB + B^2$.
- (5) () If A^{-1} exists and AB = 0, then B = 0.
- (6) () If A has a row of zeroes and if AB is defined. then AB has a row consisting of zeroes.
- (7) () If A and B are invertible matrices, then A+B is also invertible.
- (8) () If A is an $n \times n$ matrix suct that $A^2 3A + I = 0$, then $A^{-1} = A 3I$.
- (9) () If A is an invertible matrix and if B is obtained from A by row operations, then B is also invertible.
- (10) () If A is a square matrix and if B is obtained from A by a single row operation, then we necessarily have det(B) = det(A).

Question 3 (10 pts.) Find A^{-1} if $A = \begin{bmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{bmatrix}$.

Question 4.(10 pts.) Evaluate the following determinants.

(a)
$$\begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}$$

(b)
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix}$$

Question 5.(10 pts.) Given the matrix $\mathbf{A} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ d_1 & d_2 & d_3 & d_4 \end{bmatrix}$ and $\det(\mathbf{A}) = 4$, evaluate the following determinants.

$$\det(-3\mathbf{A}^T)$$

$$\det(\mathbf{A}^{-1})$$

$$\det(\mathbf{A}^4)$$

$$\det(\mathbf{A}^{-5})$$

$$\begin{vmatrix} -a_1 & -a_2 & -a_3 & -a_4 \\ b_1 & b_2 & b_3 & b_4 \\ 3c_1 & 3c_2 & 3c_3 & 3c_4 \\ 2d_1 & 2d_2 & 2d_3 & 2d_4 \end{vmatrix}$$

$$\begin{vmatrix} c_1 & c_2 & c_3 & c_4 \\ b_1 & b_2 & b_3 & b_4 \\ a_1 & a_2 & a_3 & a_4 \\ d_1 & d_2 & d_3 & d_4 \end{vmatrix}$$

$$\begin{vmatrix} a_1 - 7a_3 & a_2 & a_3 & a_4 \\ 5(b_1 - 7b_3) & 5b_2 & 5b_3 & 5b_4 \\ c_1 - 7c_3 & c_2 & c_3 & c_4 \\ d_1 - 7d_3 & d_2 & d_3 & d_4 \end{vmatrix}$$

Question 6.(10 pts.) Determine whether each of the following linear systems has no solutions, a unique solution or infinitely many solutions, explaining your answer.

(a)

$$2x + y + z = 1$$

 $x + y - z = 2$
 $x + y + 2z = 0$.

* 6

(b)
$$2x + y + z = 0$$
 $x + y - z = 0$ $x - y + 5z = 0$.

(c)

$$2x + y + z = 1$$

 $x + y - z = 2$
 $x - y + 5z = 4$.