Thus

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{0}^{1} (t^{3} + 5t^{6}) dt = \frac{t^{4}}{4} + \frac{5t^{7}}{7} \Big|_{0}^{1} = \frac{27}{28}$$

Finally, we note the connection between line integrals of vector fields and line integrals of scalar fields. Suppose the vector field \mathbf{F} on \mathbb{R}^3 is given in component form by the equation $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$. We use Definition 13 to compute its line integral along C:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} (P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}) \cdot (x'(t) \mathbf{i} + y'(t) \mathbf{j} + z'(t) \mathbf{k}) dt$$

$$= \int_{a}^{b} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$$

But this last integral is precisely the line integral in [10]. Therefore we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz \qquad \text{where } \mathbf{F} = P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}$$

For example, the integral $\int_C y \, dx + z \, dy + x \, dz$ in Example 6 could be expressed as $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ where

$$\mathbf{F}(x, y, z) = y \,\mathbf{i} + z \,\mathbf{j} + x \,\mathbf{k}$$

Exercises

1–16 Evaluate the line integral, where C is the given curve.

1.
$$\int_C y^3 ds$$
, $C: x = t^3$, $y = t$, $0 \le t \le 2$

2.
$$\int_C xy \, ds$$
, $C: x = t^2$, $y = 2t$, $0 \le t \le 1$

3.
$$\int_C xy^4 ds$$
, C is the right half of the circle $x^2 + y^2 = 16$

4.
$$\int_C x \sin y \, ds$$
, C is the line segment from $(0, 3)$ to $(4, 6)$

5.
$$\int_C (x^2 y^3 - \sqrt{x}) dy$$
,
 C is the arc of the curve $y = \sqrt{x}$ from (1, 1) to (4, 2)

6.
$$\int_C xe^y dx$$
,
 C is the arc of the curve $x = e^y$ from $(1, 0)$ to $(e, 1)$

7.
$$\int_C (x + 2y) dx + x^2 dy$$
, C consists of line segments from $(0, 0)$ to $(2, 1)$ and from $(2, 1)$ to $(3, 0)$

8.
$$\int_C x^2 dx + y^2 dy$$
, *C* consists of the arc of the circle $x^2 + y^2 = 4$ from $(2, 0)$ to $(0, 2)$ followed by the line segment from $(0, 2)$ to $(4, 3)$

9.
$$\int_C xyz \, ds$$
,
 $C: x = 2 \sin t$, $y = t$, $z = -2 \cos t$, $0 \le t \le \pi$

10.
$$\int_C xyz^2 ds$$
, C is the line segment from $(-1, 5, 0)$ to $(1, 6, 4)$

11.
$$\int_C xe^{yz} ds$$
,
 C is the line segment from $(0, 0, 0)$ to $(1, 2, 3)$

12.
$$\int_C (x^2 + y^2 + z^2) ds$$
,
 $C: x = t, \ y = \cos 2t, \ z = \sin 2t, \ 0 \le t \le 2\pi$

13.
$$\int_C xye^{yz} dy$$
, $C: x = t$, $y = t^2$, $z = t^3$, $0 \le t \le 1$

14.
$$\int_C z \, dx + x \, dy + y \, dz$$
,
 $C: x = t^2, \ y = t^3, \ z = t^2, \ 0 \le t \le 1$

15.
$$\int_C z^2 dx + x^2 dy + y^2 dz$$
, C is the line segment from $(1, 0, 0)$ to $(4, 1, 2)$

16.
$$\int_C (y+z) dx + (x+z) dy + (x+y) dz$$
, C consists of line segments from $(0,0,0)$ to $(1,0,1)$ and from $(1,0,1)$ to $(0,1,2)$

1097

- (a) If C_1 is the vertical line segment from (-3, -3) to (-3, 3), determine whether $\int_C \mathbf{F} \cdot d\mathbf{r}$ is positive, negative, or zero.
- (b) If C_2 is the counterclockwise-oriented circle with radius 3 and center the origin, determine whether $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ is positive, negative, or zero.

18. The figure shows a vector field \mathbf{F} and two curves C_1 and C_2 . Are the line integrals of \mathbf{F} over C_1 and C_2 positive, negative, or zero? Explain.

- **19–22** Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.
- 19. $\mathbf{F}(x, y) = xy \,\mathbf{i} + 3y^2 \,\mathbf{j},$ $\mathbf{r}(t) = 11t^4 \,\mathbf{i} + t^3 \,\mathbf{j}, \quad 0 \le t \le 1$
- **20.** $\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + (y z)\mathbf{j} + z^2\mathbf{k},$ $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + t^2\mathbf{k}, \quad 0 \le t \le 1$
- 21. $F(x, y, z) = \sin x \mathbf{i} + \cos y \mathbf{j} + xz \mathbf{k},$ $\mathbf{r}(t) = t^3 \mathbf{i} - t^2 \mathbf{j} + t \mathbf{k}, \quad 0 \le t \le 1$
- 22. $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + xy \mathbf{k},$ $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}, \quad 0 \le t \le \pi$
- 23-26 Use a calculator or CAS to evaluate the line integral correct to four decimal places.
- 23. $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = xy \, \mathbf{i} + \sin y \, \mathbf{j}$ and $\mathbf{r}(t) = e^t \, \mathbf{i} + e^{-t^2} \, \mathbf{j}$, $1 \le t \le 2$

- **24.** $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = y \sin z \, \mathbf{i} + z \sin x \, \mathbf{j} + x \sin y \, \mathbf{k}$ and $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin 5t \, \mathbf{k}$, $0 \le t \le \pi$
- **25.** $\int_C x \sin(y+z) ds$, where C has parametric equations $x = t^2$, $y = t^3$, $z = t^4$, $0 \le t \le 5$
- **26.** $\int_C ze^{-xy} ds$, where C has parametric equations x = t, $y = t^2$, $z = e^{-t}$, $0 \le t \le 1$
- CAS 27–28 Use a graph of the vector field \mathbf{F} and the curve C to guess whether the line integral of \mathbf{F} over C is positive, negative, or zero. Then evaluate the line integral.
 - **27.** $\mathbf{F}(x, y) = (x y)\mathbf{i} + xy\mathbf{j}$, C is the arc of the circle $x^2 + y^2 = 4$ traversed counterclockwise from (2, 0) to (0, -2)
 - **28.** $\mathbf{F}(x, y) = \frac{x}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{y}{\sqrt{x^2 + y^2}} \mathbf{j},$ *C* is the parabola $y = 1 + x^2$ from (-1, 2) to (1, 2)
 - **29.** (a) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = e^{x-1} \mathbf{i} + xy \mathbf{j}$ and C is given by $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j}$, $0 \le t \le 1$.
- (b) Illustrate part (a) by using a graphing calculator or computer to graph C and the vectors from the vector field corresponding to t = 0, $1/\sqrt{2}$, and 1 (as in Figure 13).
 - **30.** (a) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = x \mathbf{i} z \mathbf{j} + y \mathbf{k}$ and C is given by $\mathbf{r}(t) = 2t \mathbf{i} + 3t \mathbf{j} t^2 \mathbf{k}, -1 \le t \le 1$.
- (b) Illustrate part (a) by using a computer to graph C and the vectors from the vector field corresponding to $t = \pm 1$ and $\pm \frac{1}{2}$ (as in Figure 13).
- CAS 31. Find the exact value of $\int_C x^3 y^2 z \, ds$, where C is the curve with parametric equations $x = e^{-t} \cos 4t$, $y = e^{-t} \sin 4t$, $z = e^{-t}$, $0 \le t \le 2\pi$.

CAS

- **32.** (a) Find the work done by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} + xy \mathbf{j}$ on a particle that moves once around the circle $x^2 + y^2 = 4$ oriented in the counter-clockwise direction.
- (b) Use a computer algebra system to graph the force field and circle on the same screen. Use the graph to explain your answer to part (a).
- 33. A thin wire is bent into the shape of a semicircle $x^2 + y^2 = 4$, $x \ge 0$. If the linear density is a constant k, find the mass and center of mass of the wire.
- **34.** A thin wire has the shape of the first-quadrant part of the circle with center the origin and radius a. If the density function is $\rho(x, y) = kxy$, find the mass and center of mass of the wire.
- **35.** (a) Write the formulas similar to Equations 4 for the center of mass $(\bar{x}, \bar{y}, \bar{z})$ of a thin wire in the shape of a space curve C if the wire has density function $\rho(x, y, z)$.